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Abstract—Optical connections support virtual links in MPLS-
over-optical multilayer networks and therefore, errors in the op-
tical layer impact on the quality of the services deployed on such
networks. Monitoring the performance of the physical layer al-
lows verifying the proper operation of optical connections, as well
as detecting bit error rate (BER) degradations and anticipating
connection disruption. In addition, failure identification facilitates
localizing the cause of the failure by providing a short list of po-
tential failed elements and enables self-decision making to keep
committed service level. In this paper, we analyze several failure
causes affecting the quality of optical connections and propose
two different algorithms: one focused on detecting significant BER
changes in optical connections, named as BANDO, and the other
focused on identifying the most probable failure pattern, named
as LUCIDA. BANDO runs inside the network nodes to accelerate
degradation detection and sends a notification to the LUCIDA
algorithm running on the centralized controller. Experimental
measures were carried out on two different setups to obtain val-
ues for BER and received power and used to generate synthetic
data used in subsequent simulations. Results show significant im-
provement anticipating maximum BER violation with small failure
identification errors.

Index Terms—BER degradation detection, elastic optical
networks, failure identification.

I. INTRODUCTION

S ERVICE layer connections are usually set up on virtual
network topologies, where virtual links are supported by

lightpaths in the optical layer. Thus, errors in optical transmis-
sion translate into packet losses and retransmissions leading to
unacceptable Quality of Service (QoS) and to Service Level
Agreements (SLA) violations. Such violations represent money
losses for the network operator.
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Although commercially available optical equipment is able
to correct degraded optical signals by means of Forward Error
Correction (FEC) algorithms, a value of pre-FEC Bit Error Rate
(BER) over the pre-defined limit (max BER) would imply a
non-error-free post-FEC transmission and, as a result, commu-
nication would be disrupted. Therefore, a prompt detection of
optical connections with excessive pre-FEC BER can greatly
reduce SLA violations.

Monitoring the physical layer is essential to verify the fulfill-
ment of SLAs and, in the case of faults or degradations, e.g.,
transmitter laser drift or filters misconfiguration, to localize the
failed elements, and to take actions for preserving the services.
Information retrieved by commonly used power monitors mea-
suring received power (PRx) can be combined with monitoring
information accessible through emerging transponders based
on coherent detection [2], [3]. In particular, such transponders
offer the possibility to monitor several parameters associated
with connections or to the traversed links, e.g., pre-FEC BER
or linear dispersion.

In fact, coherent detection has posed new possibilities for
monitoring [4], [5]. Monitoring is attracting increasing interest
for several reasons such as: i) the reduction of system margins
(which derives in reducing capital expenditures) might induce
more frequent degradations at the optical layer [6], [7]; ii) a
more accurate estimation of the quality of transmission and an
optimization of transmission parameters, routing, and spectrum
assignment [8].

Besides optical power, thanks to the digital signal processing
(DSP) module of coherent receivers, it is possible to moni-
tor several end-to-end performance parameters. Above all, pre-
FEC BER, Optical Signal to Noise Ratio (OSNR), Q-factor,
and also electrical SNR can be monitored by already available
commercial transponders. Moreover, other parameters can be
monitored: e.g., chromatic dispersion through equalizer taps
[9], the central frequency of the signal thanks to an automatic
frequency control [10], polarization channel characteristics and
the state of polarization [11]. Such information can be col-
lected by commercial cards with a time period of 10 ms and can
also be used for failure prediction applications allowing oper-
ators to pre-empt outages [11]. However, we have to consider
that since linear impairments (e.g., dispersion) can be compen-
sated by the DSP itself, signal degradations in coherent systems
are mainly dominated by amplified spontaneous emission, non-
linear effects including also interference, and filters introducing
signal distortion. Thus, the identification of such most relevant
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impairments is mandatory. A challenge is the analysis of mon-
itoring data with the objective of identifying the nature of a
problem (e.g., decide if a reduction of the OSNR is due to
an amplifier malfunction or some other issue) and such topic
still requires to be investigated to reach an adequate maturity.
Besides the aforementioned parameters, studies are ongoing to
determine the effects of non-linearities and filters. Non-linear ef-
fects can be compensated –thus estimated– through digital back
propagation techniques [12] or maximum likelihood sequence
estimator [13]. Regarding filtering effects, studies in [14], [15]
evaluated the related induced penalties. However, work is still
needed to correlate information related to end-to-end parame-
ters such as OSNR and non-linear or filtering effects to identify
the type of failure.

Finally, as stated in [6], failure localization or quality of trans-
mission estimators [16] based on monitoring information typi-
cally require link-level characteristics while coherent receivers
provide end-to-end information. However, link-level metrics
may be obtained via correlation techniques such as network
kriging when the characteristics are linearly additive (e.g., chro-
matic dispersion) [17], or via more advanced techniques e.g.,
based on machine learning algorithms, which perform better for
non-linear impairments [18].

However, quality of transmission estimation, computed as a
function of the links and nodes traversed by each optical con-
nection, is a useful information since it can be used to configure
a BER threshold at connection set-up, which would help to de-
tect BER degradation by comparing the actual measured BER
against it. However, if the threshold value is set to a value too
close to the actual BER, many threshold-crossing notifications
would be raised because of small BER changes, which, in ad-
dition to add control overhead, do not give useful information.
On the contrary, if the threshold value is relaxed, e.g., closed
to the equipment max BER, degradation detection could not be
anticipated early enough the transmission is totally disrupted.

Regarding failure localization, several works in the literature
have proposed methods for localization of hard link failures that
affect a number of established connections, focused on reducing
restoration times (see, e.g., [19]–[21]). All the proposed methods
basically consist on computing and establishing a number of
auxiliary connections (m-trails or m-cycles). In the event of
a link failure, one single connection would be affected, thus
localizing the failed link. Few works in the literature, however,
have been focused on soft-failure localization that might affect
a single or a reduced set of optical connections. In our previous
work in [22], we focused on identifying the most probable cause
of failure after its detection; a probabilistic failure localization
algorithm based on Bayesian Networks (BN) [23] was proposed.
The proposed BN needed to be trained to locate different causes
of failures, which entail having previous data available. Note that
since failures occur very infrequently, previous data availability
is frequently unavailable.

In addition, it is hard to discern the real cause of soft failures,
since, transmitter laser shift and filters misconfiguration could
lead to similar evidence. However, discovering and identify-
ing a failure pattern reduces remarkably the subsequent failure
localization effort by providing a short list of potential failed

Fig. 1. Four failures affecting the signal of an optical connection: (a) signal
overlap, (b) tight filtering, (c) gradual drift, and (d) cyclic drift.

elements (e.g., filters used by a certain connection). Moreover,
failure identification enables self-decision making to keep com-
mitted service level, e.g., by triggering rerouting of that traffic
using a connection where a gradual BER degradation has been
identified. For this very reason, in this paper, we focus on BER
degradation detection and failure identification. Specifically, the
contribution is three-fold:

1) Section II analyzes four different failures affecting the
signal quality of an optical connection and motivates
the definition of two different algorithms: i) the BER
Anomaly Detection (BANDO) algorithm focused on de-
tecting significant BER changes in optical connections,
and ii) the Failure Identification Algorithm (LUCIDA)
algorithm that identifies the most probable failure pattern.

2) In Section III the proposed BANDO and LUCIDA al-
gorithms are described in detail. BANDO algorithm is
defined as a finite state machine (fsm) to follow the me-
tered BER and to raise notifications in case of abrupt BER
changes. LUCIDA is a probabilistic algorithm that ana-
lyzes time series from monitoring and notifications and
returns the most probable failure class together with its
probability.

3) Experimental measures for BER and PRx obtained from
two different setups are reported in Section IV. Based
on measured values, realistic scenarios are generated, and
exhaustive simulations are run, where obtained results
show the performance of the proposed algorithms.

II. BER DEGRADATION DETECTION AND FAILURE

IDENTIFICATION

Fig. 1 illustrates four failures affecting the signal quality of
an optical connection: a) signal overlap [see Fig. 1(a)] happens
when the spectrum allocation of an optical connection invades
that of a neighboring one. This might be caused by the inac-
curacy in the central frequency of the laser and/or the filters of
one of the connections; b) tight filtering [see Fig. 1(b)] appears
when there exists a central frequency misalignment or a width
inaccuracy in the filters along the route of an optical connec-
tion. Fig. 2 presents four different causes of tight filtering, where
filter F2 is misaligned in Fig. 2(a), filter F2 width is narrower
than the required frequency slot width in Fig. 2(b), filters F2
and F3 are misaligned in Fig. 2(c), and the central frequency of
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Fig. 2. Causes of tight filtering.

Fig. 3. Example of pre-FEC BER and PRx monitoring time series for the
considered BER degradation failures: (a) signal overlap, (b) tight filtering, (c)
gradual drift, and (d) cyclic drift.

the signal is misaligned in Fig. 2(d). Note that the consequence
on the optical signal is similar for all four cases; c) gradual
drift [see Fig. 1(c)] appears when either the optical signal or the
filter gradually deviate from the central frequency determined
at set-up time; and d) cyclic drift [see Fig. 1(d)] occurs when a
gradual drift describes a cyclical movement with time.

For illustrative purposes, Fig. 3 plots the evolution with time
of pre-FEC BER and PRx monitoring data metered at the re-
ceiver side of a connection affected by each of the failures
above-described. In the case of signal overlap [see Fig. 3(a)],
the allocation of a neighboring optical connection results in a
sudden increment in both, BER and PRx , of the previously es-
tablished connection. In the case of the new connection, high
pre-FEC BER and within limits PRx values can be measured

Fig. 4. Proposed architecture and algorithm features.

just after its set-up. As for tight filtering [see Fig. 3(b)], similarly
as for newly established connection in the previous case, high
pre-FEC BER and PRx values within limits can be measured in
the receptor. In the case of gradual drift [see Fig. 3(c)], pre-FEC
BER shows a gradual deterioration with time, while measured
PRx reduction is almost imperceptible. Finally, in the case of
cyclic drift [see Fig. 3(d)], high pre-FEC BER and slight PRx
reduction periods when part of the signal is out filters’ band-
width are followed by normal values when the signal is inside
them. Note that any combination of the previous failures might
happen, e.g., a gradual cyclic drift would produce increasingly
higher pre-FEC BER periods. These cyclic failures are espe-
cially difficult to identify due to its periodic nature.

It is hard to discern the real cause of the above failures since
transmitter laser degradation, and filters misconfiguration could
lead to similar evidence. In this paper, we concentrate in the
prompt detection of pre-FEC BER degradation and in the iden-
tification of the failure pattern as presented in Fig. 3.

For the BER degradation detection, we propose the BANDO
algorithm that can be placed inside network nodes, closer to the
monitoring points, to reduce the amount of monitoring data to
be conveyed to the control/management plane [24]. BANDO
detects changes in the monitored BER measured in the receptor
of an optical connection.

As for the failure identification, we propose an algorithm
named as LUCIDA that analyses monitoring time series and,
based on the expected patterns of the considered failure causes
obtained in our experiments, identifies the most probable cause
of failure affecting a given set of optical connections. Be-
cause of its target, LUCIDA needs to be placed on the net-
work manager, where monitoring data from different nodes, as
well as operational data regarding the optical connections are
available.

Fig. 4 presents the suggested architecture and placement to
run the proposed algorithms. The BANDO algorithm runs in-
side the optical nodes and has access and fine-granular moni-
toring data to accelerate BER degradation detection. Once BER
variation is detected, a notification is sent towards the network
controller for further analysis, which triggers LUCIDA for fail-
ure identification. Main features of the proposed algorithms are
also summarized in Fig. 4. Depending on the particular case,
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Fig. 5. BER and boundaries evolution with time.

different reconfiguration algorithms can be triggered after the
failure has been identified.

III. ALGORITHMS FOR BER DEGRADATION DETECTION AND

FAILURE IDENTIFICATION

In this section, we define BANDO and LUCIDA algorithms.

A. BER Anomaly Detection (BANDO) Algorithm

We assume that metered pre-FEC BER and PRx data for every
connection is received at a given rate (e.g., every minute) and
stored in a vector M of fixed capacity n in the node. BANDO
algorithm analyzes pre- FEC BER data to detect gradual changes
with time that might derive into BER degradation and intolerable
BER values, as well as sudden anomalous BER values.

Fig. 5 illustrates three cases of BER evolution with time,
where the dark continuous line represents monitored BER. Be-
sides, two different limits are presented: i) BER max is the max-
imum pre-FEC BER that equipment can correct; and ii) a BER
threshold for the current connection computed as a function of
the estimated BER (e.g., 5∗ estimated BER) and represents the
maximum tolerable BER for such connection.

To follow BER evolution with time, an outer boundary is
used to anticipate BER threshold violation and to detect sud-
den BER variations. In addition, two inner boundaries, named
as a lower boundary (lBound) and upper boundary (uBound),
are used to trigger boundary re-estimation when measured
BER reaches, exceeds or falls below one of them. Inner and
outer boundaries are estimated as bound = μ(M.ber) + / −
k · σ(M.ber), where μ(M.ber) and σ(M.ber) are the mean and
the standard deviation computed on the last n BER measures
and k is a multiplicative factor different per each boundary. Ev-
ery time an event occurs, a notification is sent to the controller
and analyzed by LUCIDA; defined events include: i) the bound-
ary is re-estimated (bCh), ii) the boundary is exceeded (bExc),
iii) BER exceeds the threshold (thExc) and iv) BER falls below
the threshold (thDec).

Fig. 5(a) presents an example of monitored BER evolution
with time causing boundary changes. As soon as monitored
BER crosses one of the inner bounds, a boundary re-estimation
is triggered, and a notification is sent toward the controller. Note
that such boundary changes do not necessarily entail excessive
BER, so the notification has an INFO severity level. Fig. 5(b)

Fig. 6. BANDO finite state machine.

and (c) present two examples of sudden BER variation where
the bound and the BER threshold is exceeded, respectively.
In such cases, boundaries are reset, and notifications are sent
to the controller with WARNING and MAJOR severity levels,
respectively. Note that, in case pre-FEC BER exceeds maximum
BER, a notification will be sent with a CRITICAL severity level.

The BANDO algorithm has been designed as an fsm with
three main states and 11 transient states (see Fig. 6); main states
are used to store whether BER status is normal or has exceeded
either the boundary or the threshold, whereas transient states
are used to produce notifications and actions (i.e., boundaries
re-estimation or reset). Every time a sample arrives, two fsm
transitions are performed, one to obtain the output and action,
and another to move to the new main state.

State E1 (normal BER) is reached when the last BER value
falls below the boundary and the threshold. Transitions to tran-
sient state T1 follow BER within boundaries, while transitions
from transient states T2 and T3 re-estimate the boundaries [as
in Fig. 5(a)]. State E2 (boundary exceeded) is reached when the
last BER value has exceeded the boundary, but it is still below
the threshold [as in Fig. 5(b)]. Transitions from transient states
T4 and T5 reset boundaries, so n − 1 new samples are needed to
arrive to re-compute new boundaries. Finally, state E3 (thresh-
old exceeded) is reached when the last monitored BER is above
the threshold [as in Fig. 5(c)]. Transitions from transient states
T7 and T8 reset boundaries, whereas from transient states T9
and T11 re-estimate them.

B. Failure Identification (LUCIDA) Algorithm

Regarding failure identification, we propose LUCIDA as a
probabilistic algorithm that returns the most likely failure among
a set Q of failure classes. Firstly, LUCIDA computes the prob-
ability of a set of relevant features H that can be observed on
collected monitoring time series. In view of the failures de-
scribed in Section II, three relevant features that can be iden-
tified and quantified in time series are: 1) PRx above the ref-
erence level (PRX high); 2) BER positive trend (BERTrend);
and 3) BER periodicity (BERPeriod). Secondly, LUCIDA maps
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TABLE I
LUCIDA ALGORITHM

feature probabilities to failure probabilities by means of prede-
fined combination functions.

Upon the reception of a BANDO notification with a rele-
vant BER change, i.e., either bExc or thExc, the algorithm in
Table I is triggered. After retrieving useful data from the re-

ceived notification, it is stored in a notification database (DB)
for further analysis (lines 1–4 in Table I). Then, the ratio be-
tween the last monitored BER value and the connection BER
threshold is computed and compared to parameter δ.

In case the ratio does not exceed δ, we assume that no failure
is evinced (line 5); otherwise, failure detection is positive, and
the identification procedure is started (lines 6–14).

Failure identification is based on processing historical BER
and PRx time series obtained from a monitoring DB, as well
as historical notifications stored in the notification DB. The
first step consists in retrieving PRx and notification time series
that are stored in the local structure M and computing feature
probabilities from data (lines 6–8). Once all feature probabilities
have been computed, failure probabilities are evaluated (line 9).
For each of the failures q, a score is computed by means of the
product of feature probabilities ((1)), where βqh coefficients are
defined in the interval [0,1].

S (q) =
∏

h∈H

[βqh · PH (h) + (1 − βqh) · (1 − PH (h))] (1)

For example, if βqh = 1 the partial score of feature h equals
PH(h); if PH(h) = 0, the partial score will be 0, thus discarding
the evidence of failure q. Finally, to obtain a failure probability
in the range [0,1], the score of every failure is normalized ((2)).

PQ (q) = S(q)
/∑

q∈Q

S(q) (2)

The failure class with the maximum probability is retrieved
(line 10). Additionally, if the probability of feature BERTrend
is non-zero, the time when maximum BER would be reached
is estimated by means of linear extrapolation computed from
monitoring data (lines 11–13).

Table II details the algorithm to compute feature probabili-
ties. Input time series are firstly split into two segments: i) the

TABLE II
COMPUTEFEATUREPROBS ALGORITHM

stationary segment (DS ) containing the oldest samples which
average and standard deviation remain near to a constant value,
and ii) the non-stationary segment (DN S ) that contains the
most recent samples where meaningful changes of mean and/or
standard deviation with respect to the stationary segment are
observed (line 1 in Table II). The rationale behind this divi-
sion is based on the assumption that monitored signals behave
stationary in time under normal conditions and that stationary
behavior is severely altered in the event of a failure.

To compute feature probabilities, we obtain the probability
distribution function F that returns high probabilities when the
evidence of the desired feature is significant. To give emphasis
to significantly high feature values (x), we use the truncated
probability distribution defined in (3), where F (x) is the cumu-
lated probability when the feature takes the value x, α ∈ [0, 1)
is the minimum allowed probability in F , and F−1(α) is the
inverse of the distribution function and returns the value with a
cumulative probability equal to α.

p (x) =

⎧
⎨

⎩

0, x < F−1 (α)
F (x) − α

1 − α
, x ≥ F−1 (α)

(3)

The probability of feature PRX high is computed by char-
acterizing the probability distribution of PRx in the stationary
segment, i.e., the PRx reference level (lines 2–4). Without loss
of generality, we assume a Gaussian distribution function de-
fined by the mean and standard deviation of the samples in that
stationary segment ((μ, σ)).

In the case of features related to BER, the non-stationary
time series segment Dns is used. Since Dns time series could
be noisy, we consider another time series Dnotif , created from
the notifications M.N time series that could reflect more clearly
the desired features of trend and periodicity; Dnotif data is
completed with intermediate data points computed by linear
interpolation (line 6). In the algorithm, we compute BER-related
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feature probabilities in both time series and return the highest
probability for each feature (lines 7–21).

For the BERTrend feature, the linear model that represents
the evolution of the maximum BER with time is found; time
series are split into several chunks, and the model is obtained
by applying linear regression to the pairs <time, maximum
value>. Note that this model collects trend independently of
whether the time series has a meaningful period or not (line 8).
The mean and the standard deviation of the slope of the model
allow evaluating whether that mean slope is significantly higher
than 0 (lines 9–10). Finally, the feature probability is computed
(3) and PH is updated (lines 11–12).

As for the BERPeriod feature, we compute a linear model for
the evolution of the minimum BER that it is used, together with
that for the maximum, to normalize the selected time series D
as specified in (4) (lines 13–14).

D′(t) =
D(t) − min model(t)

max model(t) − min model(t)
(4)

Next, the spectrogram of D′ is computed to obtain the density
value for every possible period interval (line 15) [25]. To detect
periodicity, we look for periods with densities clearly higher
than the majority of the densities; hence, we find the set of
periods with a density over the mean and its proportion over
the total of periods is compared to the expected proportion in
case of no periodicity, i.e., 0.5 (lines 16–17). Since x tends to
be 0 when no meaningful period is observed, we use a Gaussian
distribution centered in 0 and with a standard deviation inversely
proportional to the number of periods over the mean (line 18).
Feature probability is eventually computed and PH updated
(lines 19–20).

As a final remark, it is worth noting that the accuracy to detect
and identify failures is subject to various factors, including the
configuration of BANDO and LUCIDA parameters. The next
section presents illustrative results to find the best configura-
tion leading to fast and accurate detection and identification of
failures.

IV. RESULTS

In this section, we first present the experimental setup needed
to evaluate the performance of the proposed algorithms for early
pre-FEC BER degradation detection and failure identification
and then, illustrative simulation results are presented.

A. Experimental Measurements for BER and PRX

In this subsection, we experimentally reproduce the BER
degradation failures presented in Section II aiming at retrieving
data that will be used to generate synthetic data for the simula-
tions in the next subsection. A comprehensive set of measure-
ments is carried out in a network testbed employing two types
of 100 Gb/s transmission systems and different configurations
of traversed filters, channels spacing, and optical spans.

Fig. 7 presents the first experimental setup used for the mea-
surements. In this setup, the considered 100 Gb/s transmission
system is based on Nyquist wavelength division multiplexing
(NWDM) technology, derived from the lab implementation uti-

Fig. 7. Data plane experimental testbed (first setup).

Fig. 8. Experimental results for the normal conditions and considered failures:
(a) normal signal, (b) drift, and (c) signal overlap.

Fig. 9. Data plane experimental testbed (second setup).

lized in [10]. A digital-to-analog converter (DAC) is used to
periodically output pulse-shaped electrical signals which drove
the Mach-Zehnder based IQ-modulators. A root raised cosine
(RRC) with a roll-off of 0.2, and a bandwidth of 15 GHz is used
to confine signal bandwidth.

Two single polarization IQ-modulators are used to modulate
two external cavity lasers (ECL) and generate two quadrature
phase-shift keying (QPSK) at a gross baud rate of 30 Gbaud (i.e.,
60 Gb/s gross bit rate). Next, the bit rate is doubled by a polariza-
tion multiplex emulation stage thus, obtaining two 120 Gb/s po-
larization multiplexed (PM)-QPSK signals. The two modulated
lasers are then multiplexed by means of a bandwidth variable
wavelength selective switch (BV-WSS) configured to reserve a
37.5 GHz frequency slot for each channel. Measurements are
reported for signal 1.

In a first experiment, drift effects are applied by inducing fre-
quency drift to signal 1. In a second experiment, signal overlap
is introduced by applying laser drift to signal 2. In this second
case, the channel spacing among the signals decreases, inducing
an increase of interference. The spectrum related to signal 1 is
reported in Fig. 8 for both experiments. Fig. 8(a) shows signal
1 spectrum under normal conditions. Fig. 8(b) reports on the
first experiment, showing the slight shift in frequency due to the
laser drift. Fig. 8(c) reports on the second experiment, showing
that part of signal 2 falls within the bandwidth of signal 1.
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Fig. 10. Experimental BER and PRx for: (a) signal overlap, (b) tight filtering, and (c) drift.

Additional experiments have been performed on a second
setup (see Fig. 9) exploiting, as signal 1, a commercial 100 Gb/s
transmission system based on polarization multiplexing
quadrature phase shift keying (PM-QPSK) and coherent detec-
tion. In this second setup, four 80km-spans are also introduced
to assess the system performance under different conditions of
OSNR.

Fig. 10 reports pre-FEC BER and PRx provided by the com-
mercial 100 Gb/s system. It is worth noting the differences
between these plots and those in Fig. 3, where historical time
series are plotted. Plots in Fig. 10(a) show the measured values
in the case of signal overlap. In particular, the 100 Gb/s sig-
nal used in the first setup is now utilized to induce overlap the
commercial 100 Gb/s signal [x-axis in Fig. 10(a) reports such
overlap]. Results show that the pre-FEC BER starts to increase
when channel overlapping goes above 10 GHz, while received
power starts increasing for small channel overlapping values
since part of signal 2 enters in signal 1 bandwidth.

In the case of tight filtering [see Fig. 10(b)] x-axis reports
the actual bandwidth configured on the traversed BV-WSS. The
central frequency of the signal has been aligned with the center
of the filter, i.e., both sides of the signal are equally affected
when tight filtering is applied. For comparison, Fig. 10(b) also
reports the measurements for the first experimental setup (back-
to-back configuration). Results show that up to 32 GHz can be
configured without significant penalties, whilst further reduction
of the actual frequency slot drives signal degradations. Note
that post-FEC performance is error free in all the reported plots.
The minimum supported filter configuration is 26 GHz (lower
values would tear down the connection since post-FEC error

free condition can be no longer guaranteed). Regarding received
power, results show a clear deviation from the reference value,
starting from a frequency slot of 38 GHz.

A similar behavior was observed in the case of drift [see
Fig. 10(c)], where x-axis reports filter detuning. Pre-FEC BER
increases when filtering effects become more relevant because
of filter detuning. Results show that the pre-FEC BER starts to
increase when filter detuning goes above 10 GHz. Obviously,
received power decreases when part of the power is cut by the
filter; a clear deviation from the reference value is shown for
the received power when filter detuning goes above 10 GHz.
Another case of drift is that of the laser. 48-hours monitoring
was performed with the bandwidth set to 30 GHz and, because
laser drift of the commercial card, pre-FEC BER was observed
as if the bandwidth was 28 GHz.

As a conclusion, although the behavior of the pre-FEC BER
looks similar for all three failure cases, that of the received
power is different. Indeed, the proposed LUCIDA algorithm is
based on the identification of such different behaviors to discern
between failures.

B. Degradation Detection and Failure Identification

According to the experimental measurements in the previous
section, we generated synthetic monitoring time series at a rate
of one sample per minute by means of a generator implemented
in R v3.2.5. Each monitoring sample includes a synthetic mea-
sure of pre-FEC BER and PRx . The generator allows reproduc-
ing realistic monitoring activity of a set of optical connections
with different characteristics, such as route, spectrum alloca-
tion, and slot width. Based on such characteristics and those
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Fig. 11. Tuning of BANDO parameters.

of the underlying optical network topology, signal behavior in
the absence of failures is generated. Besides, a per-connection
BER threshold is computed based on an estimated BER value
computed as a function of the links’ OSNR in its route [16].

The generator allows reproducing any of the failures de-
scribed in Section II. According to the selected failure, one or
more connections become affected at a given time, when some
of their relevant physical properties are altered, e.g., filter band-
width is narrowed; in the case of gradual changes, the magnitude
of the alteration increases linearly with time following a prede-
fined rate. Varying optical connection properties, failure class,
failure magnitude, and gradual variation rate, we generated more
than 100 distinct configurations. For each configuration, five
60-day instances (each generating 86,400 monitoring samples
per optical connection) were randomly generated. Some of these
configurations produced instances where BER never exceeded
connection’s BER threshold (we call this as the lowBER set),
whereas the rest contain at least one monitoring sample ex-
ceeding the connection’s BER threshold (we call this as the
highBER set).

Both BANDO and LUCIDA algorithms were implemented
in R and integrated into a simulator following the architecture
presented in Fig. 4. Aiming at finding the best configuration for
BANDO parameters (to avoid an excessive number of notifica-
tions being sent to the controller while keeping it informed of
meaningful BER changes), we set n = 15 and perform several
tests with a wide range of k values for inner and outer bound-
aries; results are reported in Fig. 11 were values are normalized
to those for the minimum k.

Starting with inner boundaries, Fig. 11(a) shows a number
of bCh notifications for different values of k for connections
affected by a failure and for those normal. Hence, configuring
k equal to 3 allows keeping boundaries constant when normal
BER behavior is monitored. In the event of connections with
failure, less than 1% of all monitoring samples generate a bCh
notification, which is enough to keep track of BER evolution
with time as it will be shown in the following results.

Regarding the outer boundary, Fig. 11(b) shows the amount
of bExc notifications as a function of k. Fixing k equal to 6
eliminates those notifications caused by atypical BER measures
that do not entail failures, as well as keeps more than 90% of
those notifications raised in the event of a failure. It is worth
noting that bExc notifications are much less frequent than bCh

Fig. 12. Failure detection errors.

TABLE III
FAILURE IDENTIFICATION ERRORS (FIRST NOTIFICATION)

ones and consequently, its impact on total notification overhead
is negligible.

Once BANDO has been properly configured, simulations in-
cluding failure detection and identification were run. We con-
figured LUCIDA parameters α = 0.7 and βqh = 1 if failure q
must present evidence of feature h (βqh = 0, otherwise).

In the simulations, LUCIDA was triggered in two distinct
modes: only upon the reception of a thExc notification (Major
mode) and upon the reception of any notification (Info mode). It
is worth noting that only the Info mode allows detecting failures
in the lowBER set, which confirms the need of BANDO and
LUCIDA collaboration.

For the lowBER instance set and the Info triggering mode,
Fig. 12 analyses δ parameter tuning, where the percentage of
decision errors is plot as a function of its value. Since BER
threshold is set as 5∗ estimated BER, we assume δ = 0.2 as
starting point. When δ < 0.3, some normal optical connections
cross the failure detection condition and are classified as one of
the failure classes thus, producing a false positive detection. On
the other end, δ > 0.8 produces that some actual failures never
reach the detection limit and hence, they are wrongly classified
as normal (false negatives). In the middle, failure detection has
no error and hence, we assume δ = 0.5 for the ongoing results.

Let us now focus on the identification of the detected failures.
Table III details the identification error upon the reception of the
first triggering notification. Note that no identification error is
observed for signal overlap and tight filtering failures, which is
a good result since these failures generate very few notifications
and need to be identified as soon as they are detected.

As anticipated above, the Info mode allows LUCIDA to detect
all signal overlap and tight filtering failures, even when they do
not produce BER samples over the threshold, which enables
detecting soft failures hidden below a too high threshold.
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Fig. 13. Cyclic Drift Identification: (a) Info mode and (b) Major mode.

Fig. 14. Max BER anticipation.

In the case of gradual and cyclic drift failures, the first identi-
fication is not correct in most of the cases since they are related
to BER trend and periodicity features, and time is needed to en-
sure their presence or absence. However, both failures produce
many and various notifications compared to signal overlap and
tight filtering ones, and therefore, the opportunity of identifying
the failure extends beyond time.

In view of the above, we study the time needed for a right
failure classification of gradual and cyclic drift failures. Plots in
Fig. 13(a) for the Info mode and Fig. 13(b) for the Major mode
represent the evolution of the computed failure probability of
a cyclic drift failure as a function of the number of periods
since the first bCh event. Note that markers represent only those
notifications that actually triggered failure identification phase,
that is when the ratio between the last monitored BER and the
threshold exceeds δ. In both modes, the most probable failure
identified when a triggering notification is received before the
first periodical peak is gradual drift since during the raising
front LUCIDA detected a meaningful trend. In contrast, the
probability of the cyclic drift failure class is negligible since
no periodicity was found. However, when a complete period
is observable, BER periodicity feature starts being significant
and cyclic drift becomes the most probable failure class from
that point on. The difference between both modes is the time
for a right failure classification; because under the Info mode
LUCIDA receives several notifications as a result of different
events detected by BANDO, it allows a clearer identification
of the non-stationary time series segment, and therefore, it is
able to produce right classifications after one single period, i.e.,
less than half of time compared to the Major mode. Although
illustrated in Fig. 13 for just an instance, this gain keeps constant
for all other cyclic drift instances.

Finally, Fig. 14 illustrates the accuracy of the estimation for
the time when max BER (1E-6) will be reached in case of a

gradual drift failure. Prediction based on linear extrapolation
is shown at three different time instants. Although the failure
is perfectly identified as gradual drift upon the reception of a
bExc at day 30 [see Fig. 14(a)], due to the lack of evidence of
the actual future BER trend evolution, no max BER violation
in the following 30 days is predicted. Later, upon the reception
of a thExc at day 36 [see Fig. 14(b)], max BER violation is
predicted to happen in the near future. It is not until day 42,
i.e., five days before the connection is disrupted, that prediction
becomes steady to a constant value, which happens in Fig. 14(c);
hence, this method provides enough anticipation for an optimal
reaction against the failure. Comparable results were obtained
for the rest of gradual drift instances.

V. CONCLUDING REMARKS

SLA violations entail money losses for the network oper-
ators and hence, minimizing such violations is of paramount
importance to them. This paper focused on anticipating BER
degradation detection at the optical layer, which typically sup-
ports many of the offered services. In addition to a prompt BER
degradation detection, the paper targeted at failure identification
to help to localize the cause of the failure.

In this regard, two cooperating algorithms have been pro-
posed: i) the BER Anomaly Detection (BANDO) algorithm
which works inside the optical nodes to take advantage of a fine
monitoring granularity, and ii) the Failure identification algo-
rithm (LUCIDA) algorithm, working in the centralized network
controller. BANDO detects changes in the BER of optical con-
nections and sends notifications to LUCIDA.

To evaluate the performance of the algorithms, different BER
degradation failures were considered, including gradual and pe-
riodical degradation. Aiming at studying realistic scenarios, ex-
perimental measures were carried out on two different setups
involving commercial equipment. The results of the experiments
were used to generate synthetic data used to simulate the con-
sidered BER degradation failures.

Simulation results show that maximum BER violation was
anticipated several days before the connection was disrupted,
which allows planning a network reconfiguration to be per-
formed on low activity hours. Interestingly, the cooperation of
BANDO and LUCIDA algorithms demonstrated its advantage
for failure identification compared to a centralized algorithm
receiving notifications only after BER threshold violations.
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