

5G, Whitebox and Programmable Networks: Where does optical transport fit?

Andrew Lord (Head of BT Optical Research)

- 5G / BT network drivers
- Optical network architectures in the light of 5G
- Whitebox
- Conclusions

- Acknowledgements
 - My BT team
 - Metro-Haul EU project partners

2

BT Inter/Intra data centre traffic

Source: Cisco CGI, 2015-2020

вт 2 SG PPP published KPIs and Use Cases

- 1000 times higher mobile data volume per geographical area
- 10 to 100 times higher typical user data rate
- 10 times lower energy consumption
- End to end latency < 1ms
- Scalable management framework enabling fast deployment of novel applications
- Reduction of the network management OPEX by at least 20% compared to today

https://5g-ppp.eu/kpis/

© British Telecommunications plc

вт Metro-Haul architecture and scope

Access Metro Edge Node (AMEN) – multiple ubiquitous access technologies, cloud enabled (storage, compute) Metro Transport Network – metro node: pure transport Metro Core Edge Node (MCEN) – Larger cloud capabilities Metro Control Plane – full orchestration

BT Metro networks – ripe for innovation

- Vast numbers of femtocells needed to provide future 5G bandwidth
- Backhaul = deep fibre
 - Potentially hundreds of 10G + circuits over shortish range (20km typical)
- Requirements will be
 - Ultra cost effective optical transport
 - Short reach DWDM
 - Some dynamic / optical switching capability
- Existing WSS ROADMs too expensive
- Recent research starting to focus on this critical area
 - PON-based technology?
 - New modulation schemes PAM4 and others focused on chromatic dispersion tolerance
 - Novel optical filters
 - Filtered and filterless (and hybrid) networks
 - Fixed vs tunable lasers? G.Metro?

But we will need v low cost, short range, flexible high speed DWDM

BT Types of metro optical network

- Main requirement here is **very low cost** 10G-25G WDM with limited reach (<50km) and some switching. Low cost coherent 100G transport also needs deep research.
- Architecture
 - · Meshed, chains, horse shoes...
 - Traffic flows expected to be hubbed from the Access Metro Nodes to the Metro Core node
 - Resilience increased streamed traffic likely to mean increased resilience requirements
- Flexibility optical switching technology
 - Considerable attention to filterless network architectures requiring coherent transmission
 - Fixed filter approaches AWG etc) or cost effective WSS filters with some flexibility
 - C+L band

© British Telecomm

BT Integrated silicon photonics

- Ericsson technology
- Integration onto chips will enable huge cost reduction
- Performance doesn't have to match LCoS-based WSS
- 200 mm wafer realization

With CNIT...turned into a whitebox optical switch allowing fast open innovation

- MDA agent collects monitoring data from all the different sources, process them locally and conveys data to the MDA controller.
- **COM** = Control, Orchestration and Management

вт 💓 Typical results

BT Machine Learning?

- Huge current hype around this subject
- Concept relates to huge, unpredictable data sets
- Networks have potentially hundreds of nodes, each generating a huge amount of monitoring data
 - Every optical and electrical component on every board
 - Every sub-system, transceiver, EDFA, WSS...
 - Every network component, equipment card, rack, shelf...
- Can all this data be harnessed together to analyse and predict overall network performance
- Potentially TOO much data for a 'linear' analysis?
- Machine Learning could assist in optimising performance and providing warnings of future problems
- Issues
 - Is there sufficient data for the ML algorithm to learn?
 - · Is the data available from the DCN control that manages the network
 - If the algorithm makes a wrong prediction, that might be catastrophic for a Carrier Class network
 - Vendors don't have networks to trial the algorithms they have developed
 - There is no explanation 'why' a specific decision is arrived at

Area needs some careful analysis to see if conventional 'linear' analysis isn't sufficient

вт Conclusions

- Continued bandwidth growth means continued pressure on optical networks
- Focus moved discernibly from core to metro though both need attention
- 5G requires radical changes to metro networks
 - Intelligence to handle KPIs
 - Dynamic capability
 - Extended monitoring
 - Deep fibre cost effective transport
 - Power and space challenges are huge
 - Whitebox could definitely have a role in the metro
- Core
 - C band close to exhaustion (will fill up too quickly)
 - Growing interest in multiple bands (eg. Where fibre is exhausted)
 - Multicore a much longer term option

THANK YOU

