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Abstract—MPLS-over-optical virtual network topologies 
(VNT) can be adapted to near future traffic matrices based on 
predictive models that are estimated by applying data analytics 
on monitored origin-destination (OD) traffic. However, the 
deployment of independent SDN controllers for core and metro 
segments can bring large inefficiencies to this core network 
reconfiguration based on traffic prediction when traffic flows 
from metro areas are rerouted to different ingress nodes in the 
core. In such case, OD traffic patterns in the core might severely 
change thus affecting the quality of the predictive OD models. 
New traffic models’ re-estimation usually entails long time during 
which no predictive capabilities are available for the network 
operator. To alleviate this problem, we propose to extend data 
analytics to metro networks to obtain predictive models for the 
metro-flows; by knowing how these flows are aggregated into OD 
pairs in the core, we can also aggregate their predictive models 
thus accurately predicting OD traffic and therefore, enabling 
core VNT reconfiguration. To obtain quality metro-flow models, 
we propose an estimation algorithm that processes monitored 
data and returns a predictive model. In addition, a Flow 
Controller is proposed for the control architecture to allow metro 
and core controllers to exchange metro-flow model information. 
The proposed model aggregation is evaluated through exhaustive 
simulation, and eventually experimentally assessed together with 
the Flow Controller in a testbed connecting premises in CNIT 
(Pisa, Italy) and UPC (Barcelona, Spain). 

Index Terms—Predictive traffic modelling, Traffic model 
aggregation. 

I. INTRODUCTION 

any connectivity services require considerably less 
capacity than the one that optical connections offer; this 

forces operators to keep differentiated metro and core network 
segments and to deploy multilayer networks in the core to 
perform the required grooming/aggregation functionality [3]; 
metro areas are usually connected to the core through two or 
more nodes for redundancy and load balancing purposes. 

To properly design and dimension the core MPLS-over-
optical virtual network topology (VNT) during the network 
planning phase, traffic matrices containing maximum traffic 
values between every origin-destination (OD) core pairs are 
commonly used as input of planning problems. However, that 
approach entails large overprovisioning, especially in Telecom 
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Cloud scenarios [4] where traffic largely varies along the day 
in terms of volume and directionality; this, remarkably 
increases Capital Expenditures (CAPEX). In addition, 
independent software-defined networking (SDN) controllers 
are commonly deployed for the different segments (metro and 
core) and technologies (MPLS and optical). This domain-
managed network scenario might lead to local optimal 
resource allocation since flows in metro-areas (metro-flows) 
are routed considering only resource availability in the metro. 
As a result, the core VNT might become congested if metro-
flows are rerouted and enter in the core through a different 
node because of metro-scope re-optimization. 

To support and automate VNT adaptability, authors in [5] 
proposed a data analytics -enabled network manager 
architecture to store OD traffic monitoring data featuring 
prediction and detection of traffic anomalies [6] and network 
reconfiguration in response [7]. Predictive traffic models can 
be obtained by applying machine learning to monitored traffic 
data; e.g., artificial neural networks (ANN) were considered in 
[5]. Those predictive traffic models can be used in the process 
of VNT reconfiguration, where the VNT can be proactively 
adapted for the predicted near future traffic conditions; this 
improves resource utilization and reduces overprovisioning. In 
particular, the VENTURE problem was proposed in [5] to 
periodically adapt the VNT to current and predicted traffic. 

However, the efficiency of that proposal strongly depends 
on accurate predictions, which entails long monitoring data 
collection times (e.g., several weeks). In addition, OD traffic 
patterns are likely to evolve in time (generally referred to as 
concept drift), so the accuracy of current models needs to be 
monitored to eventually trigger a re-estimation if their quality 
drops below the desired level. In this regard, several works 
focusing on concept drift detection and adaption have been 
studied in the literature (see a survey in [8]). 

In the case of long-term changes, predictive models remain 
usefull even though a re-estimation has been triggered. 
Nonetheless, a sudden or abrupt OD traffic (core-flows) 
change as a result of metro-flow rerouting makes the related 
predictive models become inmediately obsolete and cannot be 
used any more. Consequently, VNT adaptability becomes 
completely reactive as a consequence of the lack of prediction, 
until new predictive models are computed based on new 
monitored data several days or even weeks later. Depending 
on the frequency of such reroutings, mantaning accurate traffic 
models by means of re-estimation might not be possible due to 
too short model training periods. 
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In view of this, new mechanisms need to be devised to keep 
predictive capabilities in the core network in front of changing 
core-flow traffic patterns because of metro-flow rerouting. In 
this regard, some authors have proposed to monitor (small) 
individual flows instead of the (large) aggregated flows for 
traffic modelling purposes. For instance, authors in [9] 
proposed a machine learning procedure that intelligently de-
aggregates relevant monitored traffic flows and aggregates the 
rest to achieve accurate traffic estimations. However, this kind 
of selective flow monitoring approaches lacks the flexibility 
required to adapt OD traffic models against any potential 
metro-flow rerouting. 

Another option is to apply data analytics in the metro 
networks, based on monitoring data from metro nodes, to 
obtain estimation models of metro-flow traffic. Metro-flow 
predictive models can be used to re-estimate obsolete OD 
models in the core. For instance, authors in [10] proposed 
AutoRegressive Integrated Moving Average (ARIMA) for 
modelling and forecasting metro area network traffic flows as 
a function of application-layer traffic flow models in IP 
networks. However, the lack of collaborative control 
architectures prevents from exchanging metro-flow models 
between the core and the metro controllers. 

It is worth mentioning that the accuracy of predictive OD 
models cannot be based only on extensive metro-flow traffic 
monitoring. Although the literature offers a broad range of 
mathematical models for fitting flow traffic data [11], 
techniques for aggregatting metro-flow models to guarantee 
reliable and accurate OD traffic predictions need to be 
explored. Among related works, the survey presented in [12] 
reviews different approaches to predict time series of an 
aggregate by means of each individual flow forecast. 

In this paper, we extend our previous work in [1] and [2] 
and propose composing OD traffic models based on the 
aggregation of metro-flow traffic models. Section II presents 
the drawbacks of using predictive OD traffic models based on 
monitoring the core, motivating the need of extending data 
analytics to the metro areas to obtain metro-flow predictive 
models that can be afterwards aggregated to obtain updated 
OD models in practical times. Based on aggregated models, 
we can predict future traffic for the OD pairs and use it as 
input for core VNT re-optimization purposes. In addition, we 
aim at requiring low storage and computing requirements to 
bring data analytics near the network nodes, thus opening the 
possibility of applying decentralized data analytics [6]. 
Specifically, the contribution of this paper is three-fold: 

1) In Section III, metro-flow traffic modelling is first 
introduced and two algorithms are presented for i) 
obtaining metro-flow predictive models from monitoring 
data and ii) for evaluating these models to obtain traffic 
predictions. We devise models with low storage and 
computing requirements to enable their utilization near the 
network nodes. 

2) In addition, we formally present the aggregation of metro-
flow models into OD models and the algorithm responsible 

for obtaining those models, either by updating or building 
obsolete OD models in the event of metro-flow rerouting. 

3) In Section IV, we propose a Flow Controller where data 
regarding metro-flows is stored and can be queried by the 
controllers. Metro controllers estimate traffic models based 
on monitoring metro-flow traffic and those models are 
available in the Flow Controller for the core controller to 
access them. In addition, metro controllers announce 
metro-flows rerouting to the core controller. 

The discussion is supported by the results presented in 
Section V. The accuracy of both metro-flow and OD 
predictive models is validated by means of exhaustive 
numerical results, and their validity for supporting core VNT 
reconfiguration based on traffic prediction under metro-flow 
rerouting is evaluated in a network simulation scenario. 
Finally, the proposed Flow Controller to support traffic 
aggregation is experimentally assessed. 

II. CORE OD TRAFFIC PREDICTION 

Let us assume the scenario in Fig. 1, where a core MPLS-
over-optical VNT interconnects several metro networks using 
dual homing. Although traffic flows can be monitored at any 
intermediate node, let us assume that metro-flows are 
monitored in metro nodes, while core OD traffic is obviously 
monitored in core nodes. Monitored traffic is sent at regular 
intervals to the corresponding controller, where predictive 
models can be estimated once enough monitoring data has 
been collected. Once these models are available, the 
VENTURE problem is executed at regular intervals (e.g. 
hourly) to adapt the VNT to the future traffic conditions [5]. 

Modelling core OD and metro-flow traffic independently at 
each network segment can lead to a degraded performance in 
the quality of the predictive models after metro-flow rerouting. 
OD pairs might aggregate many metro-flows and hence, 
rerouting some of the metro-flows in the metro areas might 
change the aggregated traffic pattern of some ODs in the core 
network. For illustrative purposes, Fig. 1 presents an example 
of a metro-flow (mf1) originated at some metro network and 
routed towards datacenter DC2 through the core VNT. The 
metro-flow is encapsulated in a MPLS Label Switched Path 
(LSP) and routed through the VNT. Initially, the LSP enters 
the core VNT through ingress node R2 towards egress node  
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Fig. 1. OD traffic can change due to metro-wide re-configuration. 
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Fig. 2. Example of a traffic model that becomes obsolete. 

R3, so it is aggregated into core OD pair R2->R3. Due to 
metro re-optimization, the metro controller reroutes the metro-
flow LSP so that to enter the core VNT through edge node R1, 
being aggregated into core OD pair R1->R3. As a result, the 
traffic profiles of both OD pairs (R1->R3 and R2->R3) have 
now changed. 

Fig. 2 illustrates the traffic profile change in OD R2->R3. 
Before the rerouting event, the predictive core OD model 
perfectly fits the actual traffic; once metro-flow LSP mf1 has 
been rerouted, the OD traffic profile changes and the 
corresponding predictive model becomes obsolete, thus 
triggering a re-estimation based on new monitoring data. Note 
that the difference between the actual traffic volume and the 
obsolete prediction can be mistakenly confused with an OD 
traffic anomaly [6], which would trigger unnecessary network 
reconfiguration. During this re-estimation process, the 
VENTURE algorithm will not be available thus allowing only 
reactive approaches to reconfigure the VNT. 

Alternatively, OD traffic can be predicted by considering its 
relationship with metro-flow traffic. Effectively, by 
aggregating the traffic models of those metro-flows being 
routed through each core OD pair we can produce new, 
updated OD traffic models. Immediately after the rerouting 
event, the obsolete model for ODs R1->R3 and R2->R3 are 
replaced by new ones based on the aggregation of metro-flows 
predictive models. Fig. 2 shows how the aggregation of metro-
flow traffic predictions perfectly fits the new OD traffic 
pattern without the need of restarting the process of 
monitoring and estimation from scratch. By following this 
approach, the core network operator can keep the predictive 
capabilities, provided that some sort of coordination between 
metro and core segments exist. 

III. TRAFFIC MODELING AND MODEL AGGREGATION 

This section is devoted to traffic modelling, as well as to 
provide detailed procedures for traffic prediction using such 
models. The methodology is general, so it can be used for 
estimating models for both metro-flows and core OD traffic. 
Assuming that the methodology is used to estimate models for 
metro-flow traffic, a procedure is then proposed for 
aggregating those models to either build new OD models or 
keep them updated after metro-flow rerouting. An evaluation 
algorithm for their utilization in VNT reconfiguration is 
eventually presented. 

A. Traffic modeling 

Let us consider that, after a certain time of monitoring 
activity, a time series of monitored traffic samples Y is 
available for model estimation. Each sample y∊Y is obtained 
following the architecture in [13]: initially, bitrate is 
monitored at packet nodes where counters are continuously 
updated during short granularity periods of duration G (e.g., 
every 1 minute). Once a period ends, bit counters are 
processed to produce a new bitrate measurement. In order to 
reduce the amount of data sent to the centralized controller, 
measures are aggregated in the node computing the arithmetic 
mean according to a larger monitoring period T (e.g., every 15 
minutes) to produce a monitoring sample y=<time, bitrate>. 

By modeling a traffic flow, we aim at obtaining an 
estimation of the expected mean (or average) bitrate μ and the 
variance σ2 as a function of time. The proposed estimation 
algorithm is presented in Table I. It receives a time series Y for 
a given traffic flow and the monitoring period T and returns 
predictive models based on this input data. Specifically, two 
models (for μ and σ2) consisting in two piece-wise linear 
functions of a certain number of segments are computed. The 
main variables used in the algorithm are: 

perDur duration of the period. 
perStart period starting time. 
nSegm number of segments of the piece-wise linear 

functions. 
segmLength length of each segment. 

The first part of the algorithm (lines 1-5 in Table I) is a pre-
processing phase consisting in grouping traffic values in time 
series Y by its relative time within the longest identified 
period. A seasonality detection procedure on the time series 
[14] is applied to compute the most likely period in the data 
(line 1). The detection procedure consists in computing the 
autocorrelation function to detect the distance between 
consecutive correlation peaks, identified as the duration of the 
period; perStart is set in consequence, e.g., 00:00h if a daily  
 

TABLE I TRAFFIC MODEL ESTIMATION ALGORITHM 

INPUT Y, T 
OUTPUT model 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18:

<perStart, perDur> ← identifyPeriod (Y) 
X ← []; nSegm ←  perDur / T 	
for y = <time,bitrate> in Y do 

t ←  ((y.time - perStart) % perDur) / T  
push(y.bitrate, X{t}) 

U ← []; V ← [];	μ ← ∅; σ2 ← ∅	
segmLength ← perDur / nSegm 
for t in 0..nSegm do 

if t < nSegm then 
U[t] ← compute mean u(X{t}) (eq. (1)) 
V[t] ← compute variance v(X{t}) (eq. (2)) 

if t = 0 continue 
if t < nSegm then t’ ← t – 1 else t ← 0; t’← nSegm - 1 
aμ	← U[t]; aσ2 ← V[t] 
bμ	← compute slope b(U[t’], U[t], segmLength) (eq. (3)) 
bσ2 ← compute slope b(V[t’], V[t], segmLength) (eq. (3)) 
μ[t] ← <aμ, bμ>; σ2[t] ← <aσ2, bσ2> 

return model=<perStart, perDur, nSegm, μ, σ2> 
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period is detected. Since samples are monitored at regular 
intervals, nSegm can be easily computed from perDur and T 
(line 2). Once the period has been obtained, data is grouped by 
segments, i.e., expressed with a time t relative to the period. 
To this aim, every sample in Y is retrieved, its relative time t 
computed and the traffic value pushed to the vector that 
contains all the samples collected at t, which is stored in data 
set X (lines 3-5). 

After the pre-processing phase, X contains the same data in 
Y but properly grouped to easily compute the coefficients of 
the linear equation of each segment of the piece-wise linear 
functions. Every vector X{t} is used to compute two 
consecutive linear equations: for segment [t-1, t] it is used as 
ending edge whereas for segment [t, t+1] it is used as starting 
edge. Thus, for each edge of a segment, the empirical mean 
and variance are computed according to those typical moment 
estimators [15] detailed in eq. (1) and (2) (lines 6-11). 
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As soon as the empirical mean and variance are available 
for both edges of a segment, the linear equations (intercept and 
slope) of that segment for both μ and σ2 models are computed 
(lines 12-17). Segments are identified by an intercept a that 
equals the empirical value at the starting of the segment and a 
slope b computed from the values at both edges and the 
segment length according to equation (3). Finally, the model 
consisting in the obtained period, the number of segments, and 
the piece-wise linear functions μ and σ2, is returned (line 18). 
In practice, nSegm is implicitly stored as the size of μ and σ2. 
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Once traffic models are available, they can be used to 
predict future traffic. Table II shows the evaluation algorithm 
that receives a predictive model and the absolute time for 
which a prediction is needed. First, the absolute time needs to 
be transformed to a time (t) within the model’s period (lines 1-
2). Next, the linear equations (slope and intercept) for µ and σ2 
that enclose t are selected (lines 3-6) and finally evaluated 
(lines 7-8). The algorithm returns the average bitrate and the 
variance prediction for the requested time (line 9). The 
number of operations that the algorithm executes is constant 
and does not depend on the size of the input; therefore, its time 
complexity is constant, which translates in fast evaluation 
times in practice. In addition, it requires a constant amount of 
additional memory apart from that used to load the model 
(space complexity is linear). This facilitates its utilization in 
computational resource scarcity environments. The storage 
requirements of these models are studied in Section V for their 
use in the network nodes. 

TABLE II MODEL EVALUATION ALGORITHM 

INPUT model, time 
OUTPUT <µ, σ2> 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

segmLength ← model.perDur / model.nSegm 
t ← (time – model.perStart) % model.perDur 
s ←  t / segmLength  
offset ← t % segmLength 
[aμ, bμ] ← model.µ[s] 
[aσ2, bσ2] ← model.σ2[s] 
µ ← aμ, +  bμ * offset 
σ2 ← aσ2 +  bσ2 * offset 
return <µ, σ2> 

 

The granularity of the previous prediction is implicitly 
given by the monitoring period T, which might not be fine 
enough for some algorithms, such as anomaly detection [6]. 
This specially affects the σ2 model, since the variance of 
bitrate at a granularity smaller than T (e.g., G) tends to be 
higher. For illustrative purposes, let us imagine that µ and σ2 

models have been obtained setting a granularity G=1 min and 
a monitoring period T=15 min. As a result of the implicit 
traffic aggregation induced by T, we will obtain: i) a µ model 
estimation close to the mean traffic observed at a granularity 
G and ii) a σ2 model estimation significantly smaller than that 
observed at a granularity G. Thus, if we want to use the σ2 
model to predict traffic with granularity 1 minute its accuracy 
needs to be improved. To that end, we propose to use 
approximated predictions applying corrections derived from 
theory of estimation in statistics [15]. 

B. OD pair traffic modelling 

Let us consider now a particular core OD pair od and its set 
of aggregated metro-flows F(od), where predictive models for 
the mean (μf) and the variance (σ2

f) are available for each 
metro-flow f in F(od). From the linearity of the expectation 
[15], the average OD traffic (μod) is equivalent to the 
summation of the metro-flow average traffic (eq. (4)). 
Regarding the OD pair variance (σ2

od), it can be expressed as 
the summation of metro-flow variances if and only if 
variances are uncorrelated (eq. (5)). Correlation is commonly 
observed in the traffic and has been already studied in the 
literature [16]. Therefore, it would not be realistic to assume 
that the aggregated metro-flows have uncorrelated traffic if, 
for instance, they convey similar service traffic. When 
correlation is present between metro-flows, the expression of 
the OD variance becomes more complex since it additional 
nonzero covariances between all pairs of aggregated flows 
needs to be added [15]. In section V we analyze the bias 
introduced in the estimation of σ2

od when covariance terms are 
excluded (linear aggregation). 
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Table III presents the proposed algorithm to create or 
update core OD traffic models after a metro-flow rerouting 
event. It receives the set Q with all OD pairs, where each pair 
includes its model m and the set of aggregated metro-flows.  
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TABLE III OD MODEL UPDATE ALGORITHM 
INPUT: Q = {<od, m, F(od)>} 
OUTPUT: S = {<od, m’>} 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 

Qobs ← getObsoleteModels(Q) 
S ← ∅ 
for each q = <od, m, F(od)> in Qobs do 

if type(m) = NEW_CORE then 
m’ ← m 

else if type(m) = NEW_METRO then 
m’ ← newAggregate(F(od)) (eqs. (4),(5)) 

else if type(m) = UPDATE then 
m’ ← updateAggregate(m, F(od)) (eqs. (6),(7)) 

S ← S U {<od, m’>} 
return S 

 

First, the set of obsolete models is found by inspecting the 
current aggregation of the metro-flows (line 1 in Table III). 
For each obsolete OD model, the type of the model determines 
whether it is a model estimated from core traffic monitoring 
(NEW_CORE) (lines 4-5), from metro traffic monitoring 
(NEW_METRO) (lines 6-7) or it is model that needs to be 
updated (UPDATE) by including the new metro-flows 
entering the OD pair and excluding those ones leaving it from 
the prediction (lines 8-9). For the updating process, we can 
take advantage of the linearity of the mean and the variance in 
the aggregation to produce updates applying equations (6) and 
(7), only taking into account those metro-flows leaving and 
entering the core OD. 
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Finally, the algorithm returns the set of updated models 
(line 9). Note that the aggregation of μ and σ2 models entails 
adding the metro-flows piece-wise linear functions. However, 
this is immediate from the piece-wise linearity of these 
functions by simply adding the slopes and intercepts for each 
segment to obtain the aggregated piece-wise linear function 
for μod and σ2

od. For the sake of simplicity, we assume that all 
aggregated models present the same period and number of 
segments. Otherwise, additional computation would be 
required to obtain the partitioning resulting from merging all 
the piecewise linear functions μf and σ2

f using the least 
common multiple period. 

Let us now analyze the worst-case time complexity of the 
previous algorithm, assuming that all OD models need to be 
re-estimated (|Qobs|=|Q|) with a maximum number of metro-
flows |F| for each re-estimation. Let us also assume that all 
aggregated models are of type NEW_METRO (i.e., built from 
scratch using eqs. (4) and (5)) being this the most time-
consuming case. Then, the worst-time complexity is 
O(|Q|·|F|·nSegm). 

Limiting the model evaluation to the mean and the variance 
as presented in Table II discards other interesting estimations 
such as the maximum bitrate, important to re-optimize the 
VNT [5]. Although this estimation is not directly provided by 
the algorithm, we can obtain it in a later stage by applying 

results from probability theory involving μ and σ2. Given a 
time t, let us assume that the traffic is distributed following a 
normal distribution N(μ, σ2). Then, eq. (8) predicts the 
maximum bitrate with a confidence of 95% and 99.7%, 
respectively for k=2 and k=3 [17]. 

)()()(max 2 tktt ododod   (8) 

Finally, note that the previous prediction provides the 
maximum traffic with granularity T (e.g., 15 min), which 
might not be enough for VNT reconfiguration actions 
typically requiring the maximum predicted bitrate during 
larger intervals (e.g., one hour [5]). One solution to obtain 
predictions for larger intervals is to produce several 
predictions along the considered interval and keep the 
maximum value obtained. Although this procedure entails 
multiple evaluations of the model thus, increasing the 
complexity of the proposed algorithm, the number of these 
evaluations needed to ensure the highest prediction provided 
by the model is known. This follows from the fact that eq. (8) 
defines a piece-wise linear function for the maximum 
prediction and that the maximum value in a piece-wise linear 
function segment takes place at the edges. Thus, it is enough 
to produce predictions at those time points where two 
consecutive segments of the piece-wise linear functions are 
connected. Note that the presented approach assumes that OD 
traffic can be accurately approximated as the sum of the 
metro-flow bitrate participating in the OD. In Section V, this 
assumption is validated for a wide range of traffic conditions. 

IV. PROPOSED CONTROL ARCHITECTURE AND WORKFLOWS 

The previous section showed how metro-flow predictive 
traffic models can be aggregated to obtain core OD traffic 
models. Therefore, metro controllers need to share information 
about metro-flow models with the core controller for the latter 
to compute predictive traffic models for each core OD pair. 

Fig. 3 presents the proposed architecture that allows this 
exchange of information. In the architecture, we assume that 
every controller includes a data analytics module capable of 
collating monitoring data form the nodes; the IPFIX protocol 
[18] can be used to that end. The data analytics module 
processes monitored data and estimates traffic predictive 
models [13]. The metro controller includes also an SDN 
controller responsible for the configuration of the network 
devices (using e.g., OpenFlow), while the core controller 
includes an additional database to store the metro-flow -
related data; a Stateful Path Computation Element (PCE), with 
the Traffic Engineering Database (TED) and the LSP-
Database (DB), complete the core controller’s architecture. 

A new centralized system, named as Flow Controller, 
contains a repository to store metro-flow-related data that 
metro controllers update and the core controller interrogates to 
produce predictive OD traffic models. The repository stores 
for each metro-flow: i) its LSP’s symbolic path name; ii) the 
border metro nodes through which the flow leaves and enters 
different metro areas. For instance, the output and input metro  
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Fig. 3. Proposed network architecture. Fig. 4. Metro-flow set-up (a), Metro-flow model estimation 

(b) and Metro-flow rerouting (c).
 

nodes for metro-flow mf1 in Fig. 3 are R1b and R2a, 
respectively; and iii) the metro-flow predictive model that 
includes its period (starting time and duration) as well as μf 
and σ2

f piecewise linear functions. 

Three workflows are defined to store/retrieve metro-flow 
data in/from the Flow Controller. Fig. 4a shows the first 
workflow triggered when a new LSP for a metro-flow is set-
up across different metro domains; every involved metro-
controller sends a JSON-encoded REST API message to the 
Flow Controller with the LSP symbolic path name and the 
ingress or egress metro border node. The Flow Controller 
creates a new entry in the flow repository and populates it 
correlating data received from different metro controllers. 

Once the LSP for the metro-flow is operational, its traffic is 
monitored in any of the metro nodes and monitored data is 
exported by means of IPFIX messages (message 1 in Fig. 4b) 
to the corresponding metro controller. When enough 
monitoring data has been collected, the analytics module in 
the metro controller estimates a new traffic model for the 
metro-flow, or it re-estimates an existing one, and it makes 
available the model in the Flow Controller by means of a 
REST API message that includes the LSP’s symbolic path 
name for identification (message 2). 

After a metro-flow data entry has been completed or 
updated, the Flow Controller notifies the core controller by 
issuing a PCEP PCReport message [19] (message 3) 
containing the list of updated metro-flow LSPs (a delay has 
been introduced to prevent flooding the core controller with 
several updates from different metro controllers). The core 
controller can now retrieve updated metro-flow data by 
issuing a REST API request (message 4), being thus able to 
update obsolete OD traffic models. When a metro controller 
decides to reroute one or more metro-flows, it updates the 

metro-flow data in the Flow Controller (message 1 in Fig. 4c), 
which proceeds as described for Fig. 4b. 

V. RESULTS 

In this section, we first evaluate the proposed metro-flow 
traffic modelling procedure by means of realistic synthetic 
traffic data. Once validated, we analyze the key aspects 
regarding metro-flow model aggregation into core OD models. 
After validating the proposed modelling procedure, we will 
illustrate the applicability of the proposed OD models for 
successfully solving the VENTURE problem. Finally, the 
proposed Flow Controller architecture supporting this traffic 
modeling approach is experimentally assessed. 

A. Metro-flow traffic modelling analysis 

Due to the diversity of service types that can be conveyed in 
realistic metro-flows, we generated traffic according to two 
clearly differentiated profiles. The first traffic profile, named 
as Users, represents the traffic aggregation of hundreds of end 
users consuming high-bandwidth applications such as video-
on-demand or live TV, with higher activity at evening hours, 
i.e. prime-time [20]. The second traffic profile, named as 
Datacenter (DC), aggregates traffic of tens of DC to DC 
connectivity services required for dynamic management 
activities of distributed DCs, such as DB synchronization or 
VM migration [21]. The daily traffic pattern of these two 
profiles is illustrated in Fig. 5. Expected traffic pattern of 
metro-flows will follow one of the profiles, where synthetic 
monitoring samples will be generated considering the value 
given by the profile plus a random fluctuation according to a 
variance which magnitude is proportional to the profile. 

Once several months of monitoring data at a granularity 
G=1 min are generated, we first focus on analyzing the quality 
of μ model estimation under different monitoring periods T of 
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Fig. 5. Users and DC metro-flow traffic profiles. 

1, 5, 15, 30 and 60 minutes. For each T, we retrieved training 
time series Y containing several months of monitored data 
used as input to the estimator algorithm in Table I. To check 
the quality of the estimation, we compared it against a new, 
validation time series Y* for each traffic profile; in particular, 
for each data value y∈Y* the error of the prediction was 
computed as the relative difference between the prediction and 
the real monitored value y. The average and maximum error 
were then compared for different values of T. By observing 
the average error, we find values under 1% for both traffic 
profiles and for T lower than 30 min. However, when looking 
at the maximum error (i.e., the worst prediction) we notice 
important differences between both traffic profiles. Whilst the 
Users profile yields maximum error values below 2% for all T, 
those for the DC profile remain low only when T≤15 min, 
while exceeding 10% for larger T; this is caused by the 
combination of abrupt changes in its daily profile and the loss 
of information because of aggregation. Consequently, setting 
T = 15 min provides a good tradeoff between information loss 
and prediction quality and hence, we fix this value for the rest 
of the study. Similar experiments were conducted to evaluate 
the estimation of the variance σ2. Fig. 6a shows the error 
resulting from comparing the estimation of σ2 against the 
variance used to generate the training time series. It can be 
observed that the estimation offers a 0-centered error bounded 
by ±10%. Results are shown averaged for the Users and DC 
profiles, yielding similar results for both individually. 

Let us now analyze the impact of the amount of training 
data (i.e., |Y|) in the quality of the predictive models. 
Monitoring traffic during the right period of time is crucial to 
produce quality models whilst minimizing the time for new 
model availability. To evaluate this, we conducted 
experiments where μ and σ2 are estimated and evaluated 
varying |Y| between 2 days and 3 months. 

Fig. 6b shows the maximum error for μ and σ2 estimations 
for different values of |Y|. Values are normalized to the ones 
obtained with |Y|=3 months, which offered an acceptable error. 
Although μ can be estimated with less than 5% maximum 
error in about 10 days, a maximum error of 60% is obtained 
for σ2 for the same time. To decrease the maximum error |Y| 
need to be increased up to 2 months to keep maximum 

prediction errors under 20%. In this work, we consider |Y|=3 
months of traffic monitoring to train models to accurately fit 
the behavior of metro-flows. Fig. 7 shows one day of 
monitoring traffic data, as well as the prediction of the μ 
model (red line) and the confidence interval at 95% that is 
obtained by means of the σ2 model (dashed lines). 

Finally, let us analyze the storage requirements for the 
proposed traffic models. Each traffic model requires 2·(2N+1) 
floating point numbers to be stored, where N is the number of 
model coefficients. As an example, in a 100-node network 
each node would require 153 KB to store all the OD models 
originated in the node modeled with daily periodicity, being 
this value increased to 4 MB if monthly periodicity is used. 

B. Metro-flow model aggregation analysis 

Let us now analyze under which traffic conditions the 
proposed predictive model aggregation (formally stated by 
eqs. (4) and (5)) is valid. These equations enatil that the bitrate 
of the OD pair resulting from the metro-flow aggregation 
accurately approximates the addition of metro-flow bitrates. 
Therefore, the analysis focuses on the traffic conditions that 
allow such approximation. 

The scenario were several metro-flows are aggregated into a 
single core OD pair can be modelled using queuing theory; 
metro-flow packets arrive to a packet-switching node, where 
they are queued and aggregated into a single OD pair at a 
maximum give rate, e.g., 100 Gb/s. As proposed in [22], this 
can be mathematically modeled by a G/D/1 queue, assuming a 
generic distribution of arriving packets and a single server 
with constant service time. In such queue, the sum of the 
metro-flow bitrates accurately approximates the resulting OD 
pair bitrate as long as the actual service rate does not exceed 
90% of its maximum (queue length remains small) [23]. Such 
condition must be ensured during the process of VNT 
reconfiguration, and therefore vlink capacities must be 
dimensioned to ensure that OD capacity utilization is under 
the aforementioned threshold. 

Let us finally evaluate the bias introduced in the estimation 
of σ2

od (as presented in section III.B) by running experiments 
where the maximum bitrate (eq. (8)) is predicted for a single 
OD pair aggregating Users metro-flows only, which leads to a 
large and positive covariance. Fig. 8a shows the minimum 
value of k needed to predict the maximum bitrate below a 
given error for different number of aggregated metro-flows. 
Although the typical values for k do not provide the expected 
confidence intervals, k=5 produces error below than 2%. 
However, k cannot be bounded when 0% error is desired.  

Finally, Fig. 8b illustrates the bitrate of an OD pair along 
the day mixing different metro-flow traffic profiles, as well as 
the predictions based on the proposed metro-flow model 
aggregation. Note that min and max models have been 
obtained for k=5. As expected, because of traffic aggregation, 
the variability of OD traffic is much smaller than that of 
metro-flows. 
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Fig. 7. Prediction of min/max/avg for Users (a) and DC (b) traffic 
profiles. 
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Fig. 8. (a) Value of k (eq. (8)) vs. number of aggregated metro-flows and (b) 

Prediction of min/max/avg OD bitrate during one day. 

C. VNT reconfiguration performance 

For evaluation purposes, we developed an event driven 
network simulator and considered a 14-node core VNT 
interconnecting 7 metro networks using dual-homing, where 
100 Gb/s lightpaths support vlinks in the metro areas. A total 
of 1,400 metro-flows following the Users and DC profiles 
were injected into the core VNT and monitored for |Y|=3 
months to estimate core-based OD models. The same 
estimation time was used for Metro-flow traffic models. 

Once models have been estimated, two metro-flow 
rerouting actions are triggered daily in all metro areas, being 
the core controller notified for such changes. The first 
rerouting action takes place at 7 am and it splits metro-flows 
leaving the metro area to use the two egress routers to avoid 
congestion. Two rerouting schemes are considered: i) 
randomized and ii) per type of service. When the randomized 
rerouting scheme is used, metro-flows are evenly split to use 
the two egress routers, whereas in the per type of service 
scheme only the flows of randomly selected services are 
rerouted towards the second router. The second rerouting 
action takes place at 8 pm and groups all metro-flows to use 
one single egress router.  

Under these scenarios, we evaluated two different 
approaches to reconfigure the core VNT. The first approach, 
named as threshold-based uses a fully meshed VNT and 
increases or decreases vlinks’ capacities according a capacity 
usage threshold; this approach is followed when the core 
controller is not able to rebuild obsolete OD traffic models 
under frequent metro-flow rerouting. In the second approach, 
the VENTURE algorithm [5] runs periodically, e.g., every 
hour, to optimize the VNT using OD traffic predictions based 
on the proposed metro-flow model aggregation updates. 

Fig. 9 shows the maximum number of 100Gb/s 
transponders needed to convey core traffic under the 
randomized (a) and the per type of service (b) rerouting 
schemes, for a range of increasing traffic loads. Note that 
since the number of transponders is not limited in the nodes, 
both reconfiguration approaches offer zero blocking 
probability. It can be observed that VENTURE is able to adapt 
the VNT using less transponders than that of the threshold-
based approach in the studied range of loads, producing 
savings up to 30% under the randomized rerouting scheme and 
up to 40% when per type of service rerouting is considered. 

D. Experimental assessment 

Experiments to assess the proposed architecture have been 
carried out in a distributed test-bed connecting CNIT (Pisa, 
Italy) and UPC (Barcelona, Spain) premises. A core controller 
with segment-routing capabilities [24] was located at CNIT, 
whereas the Flow Controller and two metro controllers were 
located at UPC. The core and metro controllers were extended 
with an HTTP REST API interface to exchange JSON-
encoded messages with the Flow Controller. The SDN 
controller used in the metro areas is based on RyuSDN and 
uses OpenFlow to configure the network nodes. Finally, a set 
of extended nodes [13] implemented on top of 
OpenVSwitches were deployed using Mininet at UPC 
premises to allow monitoring traffic. For the experiments, the 
example in Fig. 1 was reproduced; for the sake of clarity, the 
captures in Fig. 10 and Fig. 11 are labeled as in Fig. 4. 

Fig. 10a lists the REST API messages exchanged between 
the metro controllers and Flow Controller after a LSP is set-up  
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Fig. 10. Messages list for metro-flow set-up (a), metro-flow traffic model 
update (b) and metro-flow LSP rerouting (c). 

Fig. 11. Details of traffic model (a), metro-flow (b) and updated metro-flow 
data (c). 

for metro-flow mf1 across the two metro domains (labeled as 
in Fig. 4a). 

Messages specify the LSP’s symbolic path name (mf1) and 
the IP address of the metro border node. Fig. 10b shows an 
IPFIX flow message (labeled as 1 in Fig. 4b) containing 
monitoring data from mf1 that is sent to the source metro 
controller for traffic model estimation. After collecting enough 
traffic data, a predictive model is estimated by the metro 
controller and sent to the Flow Controller in a JSON-encoded 
REST API message (message 2). The details are shown in Fig. 
11a and include the LSP symbolic path name and the data 
representing the metro-flow predictive model. Next, the Flow 
Controller issues a PCEP PCReport message to the core 
controller notifying the new data available for mf1 (message 
3). The PCReport message contains a list of Stateful Request 
Parameters (SRP) and one LSP object with the LSP’s 
symbolic path name. The core controller then issues a REST-
API request with the LSP symbolic name (message 4) to 
retrieve its data (detailed in Fig. 11b).  

Finally, Fig. 10c lists the messages exchanged after 
rerouting mf1. First, the new border output node is sent by the 
metro controller in a REST API message to the Flow 
Controller (labeled as 1 in Fig. 4c). Once the Flow Controller 
updates the metro-flow data, equivalent messages to those for 
model creation are exchanged with the core controller to allow 
obtaining updated data for the rerouted LSPs (notice the 
updated border node in Fig. 11c). The new traffic models for 
the OD traffic are computed afterward and become available 
after less than 100 ms from the rerouting notification. 

VI. CONCLUSIONS 

Aggregated metro-flow traffic predictive model is proposed 
to cope with OD traffic changes in the core as a result of 
uncoordinated metro-flow rerouting, where the predictive 
traffic models are used to reconfigure the core VNT. By 
conveniently aggregating metro-flows after they become 
rerouted, OD predictive models can be rebuilt fast to keep the 
predictive capabilities in the core. To obtain quality metro-
flow predictive models, an estimation algorithm that allows 
obtaining models that can be aggregated and evaluated 
efficiently is presented. 

To be able to create the core OD predictive traffic models, a 
Flow Controller is proposed to allow metro controllers to 
share metro-flow traffic models with the core controller. Three 
workflows have been proposed to keep updated metro-flow 
data in the Flow Controller: triggered either by the estimation 
of a new predictive traffic model or by a rerouting action. In 
any case, these actions originated by metro controllers are 
properly notified to the Flow Controller and eventually to the 
core controller. 

The process of metro-flow modelling was analyzed, 
concluding that at least 2 months of monitoring data 
aggregated every 15 minutes are needed to obtain quality 
predictions for different traffic profiles. The aggregated traffic 
model was then used as input for a VNT reconfiguration 
algorithm, which was evaluated against a threshold-based 
approach used when new models cannot be rebuilt under 
changing OD traffic, obtaining savings as high as 40% in 
terms of used transponders. 

Finally, the proposed architecture, including the Flow 
Controller, was experimentally assessed in a distributed test-
bed connecting CNIT and UPC premises. 
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