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M. Tornatore – Emerging research directions for machine 
learning in optical networks 
 
 

• “Field of study that gives computers the ability to learn 
without being explicitly programmed” (A. Samuel, 1959) 

• “… through data observation” 
 

• For our purposes: An set of math/statistical tools to make 
predictions/decisions based on  monitored data 
…in the context of optical networks 
 

• Confusing overlap with other terms: Artificial Intelligence, 
Deep Learning, Data Analytics, Data Mining, etc. 
 

What is Machine Learning? 
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• Dominating complexity  

– Coherent Trasmission /Elastic Networks 
o Several system parameters: channel bandwidth, modulation 

formats, coding rates, symbol rates..  
 

• Lack of skilled workforce 
– NTT warning (OFC 2017): aging population, increasing competition for 

young STEM workforce 
 

• 5G Transport   
 

• New enablers @ Mngt&Cntr plane  
– Software Defined Networking 
– Edge computing 
– OPM’s (some are for free.. as in coherent receivers..) 
 

Why only now in optical networks? 
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Automation of Optical Network Management 
• Management is still largely manual/human-based!  
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• QoT estimation and Routing and Spectrum Assignment 

 
• Soft-Failure Mode Identification 

 
• Quickly, some other applications… 

 
 

Covered topics 
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I’ll share my experience in 
developing ML-based 

solutions in Optical Networks 
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• A wider range of degrees of freedom (parameters) is available 
to system engineers: 
• path 
• spectrum 
• modulation format 
• baud rate 
• FEC coding  
• single/multicarrier transmission 
• nonlinearity mitigation solution 
• adaptive channel spacing 
• … 

• Combinations of these lighpath parameters grow dramatically 
• Possibly, for all of these combinations, we shall calculate a QoT 

 

Motivation 
Increasing «degrees of freedom» 
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• “Exact” analytical models estimating physical layer 
impairments (e.g., split-step Fourier method…)  
• Accurate results 
• Heavy computational requirements 
• Not scalable to large networks and real time estimations 

 
• Marginated formulas (Power Budget, Gaussian model…) 

• Faster and more scalable 
• Inaccurate, high margination, underutilization of network 

resources (up to extra 2 dB for design margins [1]) 
 

 
 

Existing (pre-deployment) estimation techniques for 
lightpath QoT 
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[1] Y. Pointurier, "Design of low-margin optical networks," in IEEE/OSA Journal of Optical Communications and 
Networking, vol. 9, no. 1, pp. A9-A17, Jan. 2017. doi: 10.1364/JOCN.9.0000A9 
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• Machine Learning exploits knowledge extracted from field data…  
• QoT of already established lightpaths, e.g. using monitors at the receiver 

• …. to predict the QoT of unestablished lightpaths  
 

 
 

• No need for complex analytical models 
• Fast and scalable 
• Requires training phase with historical data 

• How long must the training phase be?  
• How accurate will the estimation be? 
• Objectives of our numerical analysis…. 

Machine Learning as an alternative approach? 
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RSA interplays with  QoT estimation 

Marginated 
BER/OSNR 

calculations ML Classifier Routing and spectrum 
assignment algorithm 

Traffic 
request 

Lightpath deployment 

Query input 
(set of 

features) 

Answer 
(estimated 
BER/OSNR) 

Selection 

Measured BER/OSNR 

Classifier 
training 

Why margins? 
- Imperfect knowledge  
     (e.g., noise figure) 
- Aging 
- Non linearities 

TRAINING  
SET 
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• Input: set of lightpath features 
• Output: probabilty that  BER ≤ T* 
 

How does it work? 
A possible implementation of ML-based QoT estimation 
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(Case of local knowledge, but we can add more features for network knowledge) 

C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for Quality of Transmission 
Estimation of Unestablished Lightpaths, JOCN2018 
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• To the previous 6 feature we add, for the «most interfering 
left and right neighbors»: 
• guardband 
• traffic volume 
• modulation format 

 
• Note: these additional six features are chosen with the 

intent to capture cross-channel nonlinear effects 
 

How our proposed ML classifier  works 
Case 2 
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(Case of complete knowledge) 
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• We use a Random Forest (RF) classifier with 25 estimators 
• To take this choice, we have compared:  

• 5 RF classifiers 
• 3 k-Nearest-Neighbor classifiers 

 
 
 
 
 
 

 
 
 

• RF with 25 estimators provided the best trade-off between 
performance and computational time 
 
 
 
 

 
 

 
 

Which Machine Learning Technique? 
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• Japanese optical network 
• Flexgrid         @ 12.5 GHz slices 
• Transceivers @ 28 GBaud with adaptive modulation formats 

• DP-BPSK, -QPSK, -8-QAM, -16-QAM, -32-QAM, -64-QAM 
• Traffic requests: [50;1000] Gbps  
• Synthetic training data (Gaussian Noise model) 

• With expneg distributed additional penalty! 
 

 
 

 
 

Training and Testing Scenario 
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How big shall training dataset be?  
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• Synthetic Test scenario 
 
 
 
 
 
 
 

• Accuracy: Area under the 
ROC curve (AUC) 

Take-Away 1: Training phase has 
a reasonable duration  

C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for Quality of Transmission 
Estimation of Unestablished Lightpaths, JOCN2018 
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• Use historical data 
• We will never observe samples of with too high BER!! 

• Use random probes:  
• Very costly (high spectrum occupation)  

• Use selective probes: 
• Lower spectrum occupation,  good accuracy 

How to build the training dataset? 

15 



M. Tornatore – Emerging research directions for machine 
learning in optical networks 
 
 

• Removing irrelevant «ML-input features» makes the system 
less costly and less complex to manage  

Analysis of feature relevance 
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• QoT estimation and Routing and Spectrum Assignment 

 
• Soft-Failure Mode Identification 

 
• Quickly, some other applications… 

Covered topics 
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• Hard-failures 
o Sudden events, e.g., fiber cuts, power outages, etc. 
o Unpredictable, require «protection» (reactive procedures) 

• Soft-failures: 
o Gradual transmission degradation due to equipment 

malfunctioning, filter shrinking/misalignment… 
o Trigger early network reconfiguration (proactive procedures) 

 
 

Two main failure types in optical networks 
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RX TX 
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• How can we predict soft-failures? 
 
 
 
 
 
 
 
 
Perform continuous monitoring of  
Bit Error Rate (BER) at the receiver… 
… until some “anomalies” are detected 
 
Early-detection helps preventing service  
disruption (e.g., through proactive network reconfiguration) 

Soft-failure early detection 
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• How can we identify the mode of the failure? 
– Failures can be caused by different sources 

o Filters shrinking/misalignment 
o Excessive attenuation (e.g., due to amplifier malfunctioning) 
o Laser/photodetectors malfunctioning 
o … 

 
 

 
 
 
 
Different sources of failure can be distinguished  
via the different effects they cause on BER variation 
(i.e., via different BER “features”) 

Soft-failure mode identification 
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2nd Phase of our study 
Deciding ML algorithm, 
Training &Validation 
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BER window Features ML algorithm 

- BER statistics: 
- mean 
- min/max 
- standard dev. 

- Window spectral 
components 

- Feature Scaling 

Fault detection: 
- Binary SVM 
- Random Forest 
- Multiclass SVM 
- Neural Network 
Fault identification: 
- Neural Network 

 Validation (optimization of hyperparameters) 

Select: 
- BER sampling 

time (TBER) 
- window size 

(duration of 
observation) 

1. Data  
Retrieval 

3. Prediction  
and  

Evaluation 
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• Testbed for real BER traces  
– Ericsson 380 km transmission system  

o 24 hours BER monitoring 
o 3 seconds sampling interval 

– PM-QPSK modulation @ 100Gb/s  
– 6 Erbium Doped Fiber Amplifiers (EDFA) followed by Variable 

Optical Attenuators (VOAs) 
– Bandwidth-Variable Wavelength Selective Switch (BV-WSS) is used 

to emulate 2 types of BER degradation: 
o Filter misalignment 
o Additional attenuation in intermediate span (e.g., due to EDFA gain-reduction) 

Testbed setup 
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Numerical results: Identification 
Accuracy vs window features 
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• Neural Network 

Take-away 3: To perform 
failure-cause identification, 
fine sampling period of BER 
is needed 
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Benefits for operators 
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• Reduced Time To Repair (TTR) 

– Almost instantaneous troubleshooting 
– TTR from hours/days to minutes/hours? 

• Reduced Service Downtime 
– Early detection eliminates a class of failure 

 
• First demonstrations 

 
 

S. Shahkarami, F. Musumeci, F. Cugini, M. Tornatore, “Machine-Learning-Based Soft-
Failure Detection and Identification in Optical Networks,“ in Proceedings, OFC 2018, San 
Diego (CA), Usa, Mar. 11-15, 2018 

Vela et al., “BER degradation Detection and Failure Identification in Elastic Optical 
Networks”, in Journal of Lightwave Technology, vol. 35, no. 21, pp. 4595-4604, Nov. 2017 
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• [QoT] Optical network is a living network 
– Continuos training.. How? 

 
• [QoT]  How to build the right training set? 

– Rare occurences of false positives -> Low accuracy…  
– Selective probes? 
 

• [Failure]  What if completely new/unclassified failure arise?  
– «Novelty detection» ? 

 
 

 

Many open questions/challenges! 

25 



M. Tornatore – Emerging research directions for machine 
learning in optical networks 
 
 

• Physical layer 
1. Optical amplifier control 
2. Modulation format recognition 
3. Nonlinearities mitigation 
 

• Network layer 
1. Traffic prediction and virtual topology design 
2. Flow classification 

Overview of other applications 

Classification taken from: F. Musumeci et al., “A Survey on Application of Machine Learning Techniques in Optical Networks”, Accepted 
to IEEE Communication Surveys and Tutorial, available online (Arxiv) 
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Thanks for your attention! 
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massimo.tornatore@polimi.it 
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