

Workshop: AI on Optical Networks @BUPT

Emerging Research Directions for Machine Learning in Optical Networks

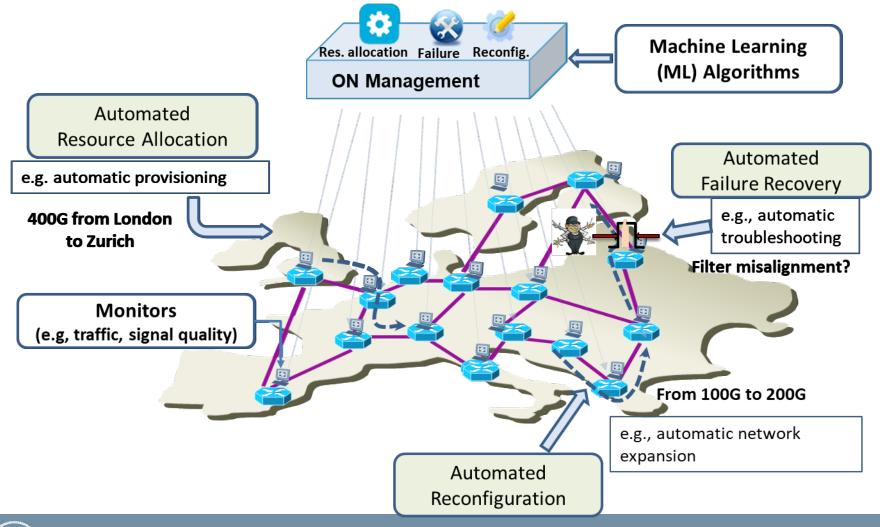
Speaker: Massimo Tornatore

Associate Professor, Politecnico di Milano, Italy

Beijing University of Posts and Telecommunications Nov. 2nd, 2018, Beijing, China

What is Machine Learning?

- *"Field of study that gives computers the ability to learn without being explicitly programmed"* (A. Samuel, 1959)
- <u>"... through data observation</u>"
- For our purposes: An set of math/statistical tools to make predictions/decisions based on monitored data
 ...in the context of optical networks
- Confusing overlap with other terms: Artificial Intelligence, Deep Learning, Data Analytics, Data Mining, etc.


Why only now in optical networks?

- Dominating complexity
 - Coherent Trasmission /Elastic Networks
 - Several system parameters: channel bandwidth, modulation formats, coding rates, symbol rates..
- Lack of <u>skilled</u> workforce
 - NTT warning (OFC 2017): aging population, increasing competition for young STEM workforce
- 5G Transport
- New enablers @ *Mngt&Cntr* plane
 - Software Defined Networking
 - Edge computing
 - OPM's (some are for free.. as in coherent receivers..)

Automation of Optical Network Management

• Management is still largely manual/human-based!

POLITECNICO MILANO 1863

Covered topics

- QoT estimation and Routing and Spectrum Assignment
- Soft-Failure Mode Identification

I'll share my experience in developing ML-based solutions in Optical Networks

• Quickly, some other applications...

POLITECNICO MILANO 1863

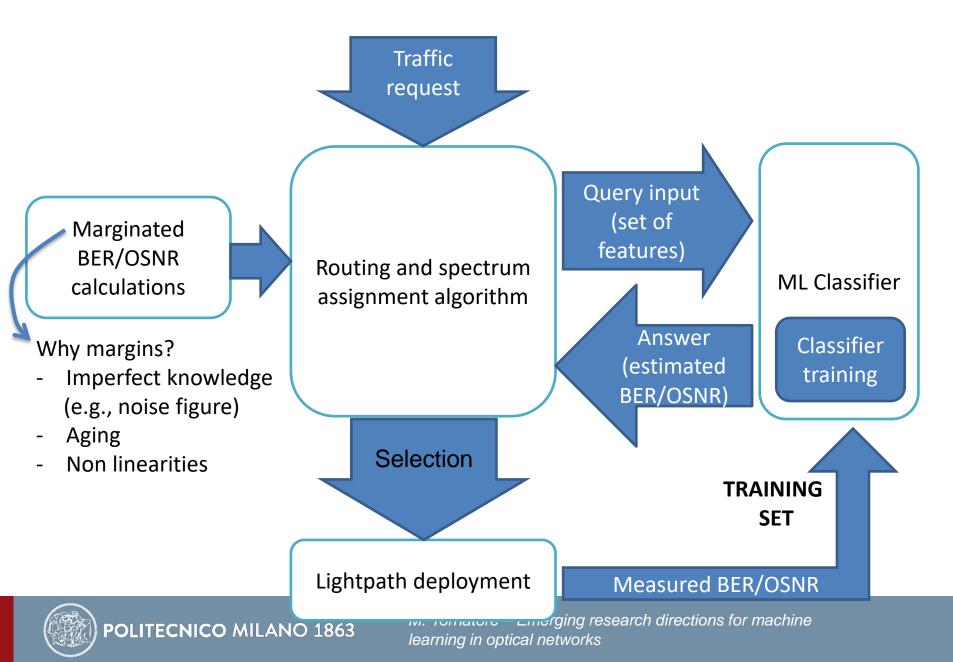
Motivation Increasing «degrees of freedom»

- A wider range of degrees of freedom (parameters) is available to system engineers:
 - path
 - spectrum
 - modulation format
 - baud rate
 - FEC coding
 - single/multicarrier transmission
 - nonlinearity mitigation solution
 - adaptive channel spacing
 - .
- Combinations of these lighpath parameters grow dramatically
- Possibly, for all of these combinations, we shall calculate a QoT

Existing (pre-deployment) estimation techniques for lightpath QoT

- "Exact" analytical models estimating physical layer impairments (e.g., split-step Fourier method...)
 - 😳 Accurate results
 - Beavy computational requirements
 - Not scalable to large networks and real time estimations
- Marginated formulas (Power Budget, Gaussian model...)
 - Faster and more scalable
 - Inaccurate, high margination, underutilization of network resources (up to extra 2 dB for design margins [1])

[1] Y. Pointurier, "Design of low-margin optical networks," in *IEEE/OSA Journal of Optical Communications and Networking*, vol. 9, no. 1, pp. A9-A17, Jan. 2017. doi: 10.1364/JOCN.9.0000A9


Machine Learning as an alternative approach?

- Machine Learning exploits knowledge extracted from field data...
 - QoT of already established lightpaths, e.g. using monitors at the receiver
- to predict the QoT of unestablished lightpaths

- No need for complex analytical models
- Fast and scalable
- Requires training phase with historical data
 How long must the training phase be?
 - Bow accurate will the estimation be?
 - Objectives of our numerical analysis....


RSA interplays with QoT estimation

How does it work?

A possible implementation of ML-based QoT estimation

- Input: set of lightpath features
- Output: probability that $BER \leq T^*$

(Case of local knowledge, but we can add more features for network knowledge)

C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for Quality of Transmission Estimation of Unestablished Lightpaths, JOCN2018

How our proposed ML classifier works Case 2

- To the previous 6 feature we add, for the «most interfering left and right neighbors»:
 - guardband
 - traffic volume

(Case of **complete** knowledge)

- modulation format
- Note: these additional six features are chosen with the intent to capture cross-channel nonlinear effects

POLITECNICO MILANO 1863

Which Machine Learning Technique?

- We use a Random Forest (RF) classifier with 25 estimators
- To take this choice, we have compared:
 - 5 RF classifiers
 - 3 k-Nearest-Neighbor classifiers

Algorithm	Training time (s)	Test time (s)	AUC	Accuracy	
Dummy classifier	0.048979	3.83 e-07	0.501	0.539	
1 Nearest Neighbor	1.183121	4.83 e-05	0.959	0.957	
5 Nearest Neighbor	1.085116	5.05 e-05	0.991	0.965	
25 Nearest Neighbor	1.211694	6.91 e-05	0.996	0.965	
Random Forest 1 tree	0.076944	3.96 e-07	0.991	0.965	
Random Forest 5 trees	0.180835	6.24 e-07	0.995	0.970	
Random Forest 25 trees	0.721042	1.56 e-06	0.996	0.968	
Random Forest 100 trees	2.830545	5.32 e-06	0.996	0.966	
Random Forest 500 trees	14.052182	2.63 e-05	0.996	0.966	

• RF with 25 estimators provided the best trade-off between performance and computational time

Training and Testing Scenario

- Japanese optical network
- Flexgrid @ 12.5 GHz slices
- Transceivers @ 28 GBaud with adaptive modulation formats
 - DP-BPSK, -QPSK, -8-QAM, -16-QAM, -32-QAM, -64-QAM

240 km

km

80

240 km

- Traffic requests: [50;1000] Gbps
- Synthetic training data (Gaussian Noise model)

240 Km

160 km (

2

1

• With expneg distributed additional penalty!

40 kn

240 km

80 km

5

160 km

14

12

10

160 km

40

240 km

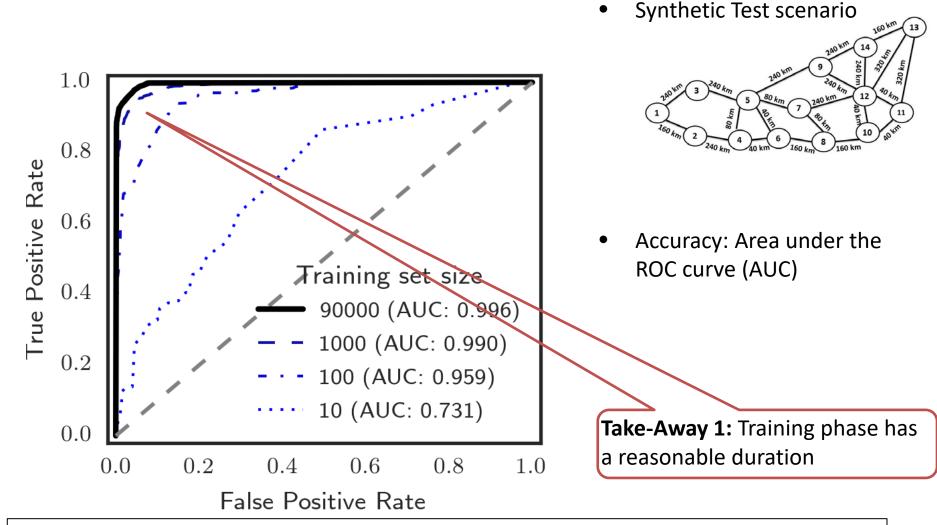
240 km

9

240 km

160 k

13


320 km

11

40 km

AOKM

How big shall training dataset be?

C. Rottondi, L. Barletta, A. Giusti and M. Tornatore, A Machine Learning Method for Quality of Transmission Estimation of Unestablished Lightpaths, JOCN2018

How to build the training dataset?

• Use historical data

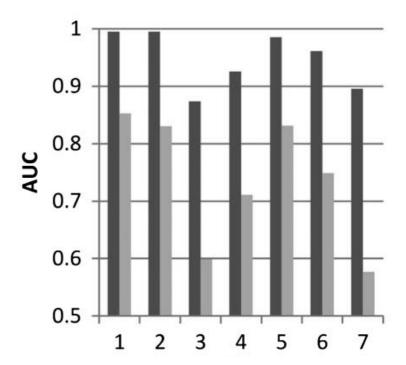
Berve samples of with too high BER!!

- Use random probes:
 Very costly (high spectrum occupation)
- Use selective probes:

Lower spectrum occupation, good accuracy

TABLE V: AUC comparison of probing approaches

Training set	AUC (full lesting dataset)
C (historical)	0.77
C (selective, 5% probes)	0.85
C (selective, 10% probes)	0.87
C (selective, 25% probes)	0.89
C (selective, 50% probes)	0.89
A (random)	0.98



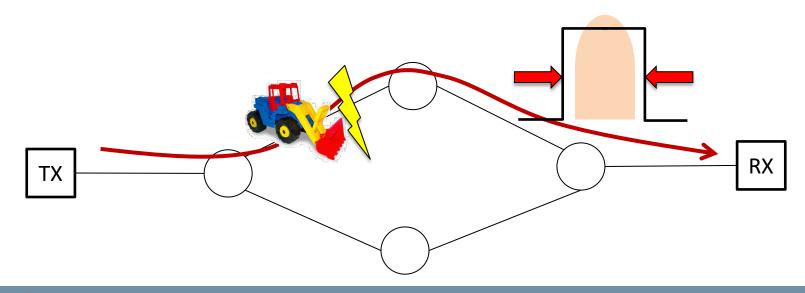
Analysis of feature relevance

 Removing irrelevant «ML-input features» makes the system less costly and less complex to manage

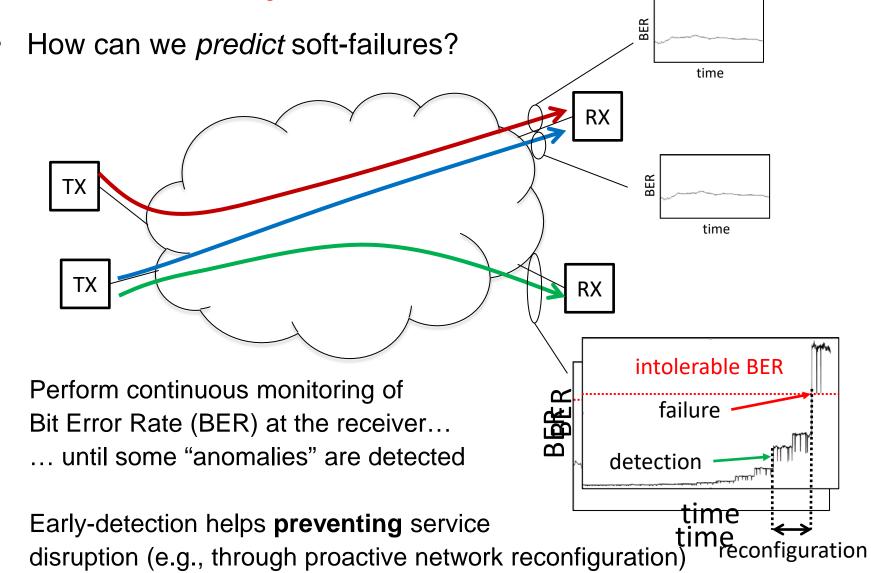
TABLE IV: The considered feature subsets

	S 1	- \$2	S3	<u>84</u>	S5	<u>S6</u>	S7
number of links	1	\$	4	~			
lighpath length	<	<	~	~	<	Ý	
length of longest link	×	 Image: A set of the set of the	× .	1			
traffic volume	1	~	4		~		×
modulation format	1	<		× .	<	4	× .
guardband, modulation	× .						
format and traffic volume							
of nearest left and right							
neighbor							

Covered topics

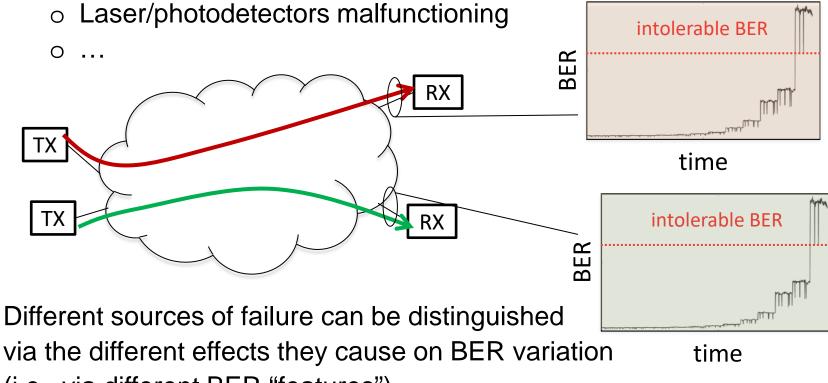

- QoT estimation and Routing and Spectrum Assignment
- Soft-Failure Mode Identification
- Quickly, some other applications...

POLITECNICO MILANO 1863

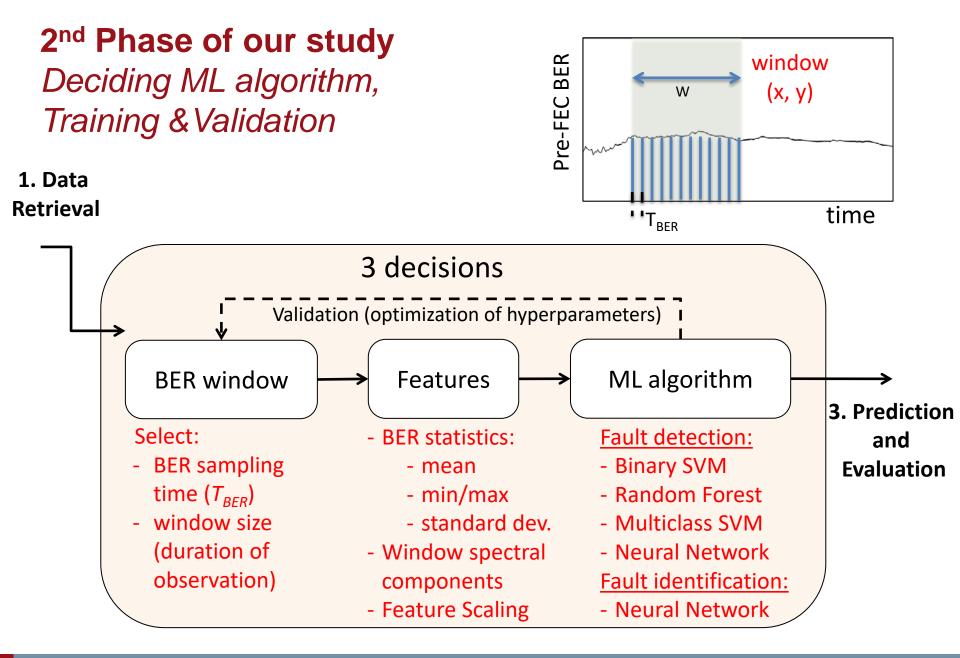

Two main failure types in optical networks

- Hard-failures
 - Sudden events, e.g., fiber cuts, power outages, etc.
 - Unpredictable, require «protection» (reactive procedures)
- Soft-failures:
 - Gradual transmission degradation due to equipment malfunctioning, filter shrinking/misalignment...
 - o Trigger early network reconfiguration (proactive procedures)

Soft-failure early detection



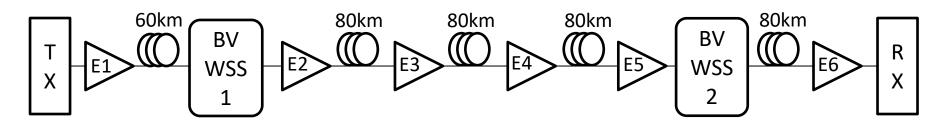
POLITECNICO MILANO 1863


Soft-failure mode identification

- How can we identify the *mode* of the failure?
 - Failures can be caused by different sources
 - o Filters shrinking/misalignment
 - o Excessive attenuation (e.g., due to amplifier malfunctioning)

(i.e., via different BER "features")

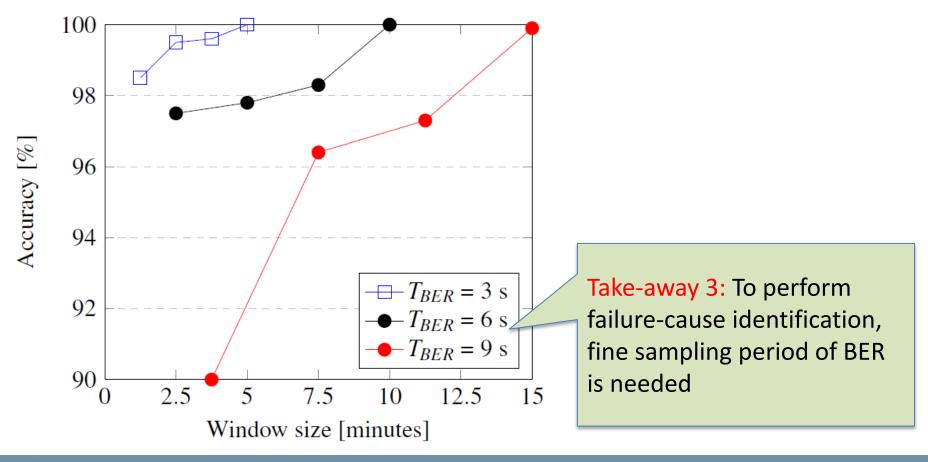
POLITECNICO MILANO 1863



POLITECNICO MILANO 1863

Testbed setup

- Testbed for real BER traces
 - Ericsson 380 km transmission system
 - o 24 hours BER monitoring
 - o 3 seconds sampling interval
 - PM-QPSK modulation @ 100Gb/s
 - 6 Erbium Doped Fiber Amplifiers (EDFA) followed by Variable Optical Attenuators (VOAs)
 - Bandwidth-Variable Wavelength Selective Switch (BV-WSS) is used to emulate 2 types of BER degradation:
 - Filter misalignment
 - o Additional attenuation in intermediate span (e.g., due to EDFA gain-reduction)



Numerical results: Identification

Accuracy vs window features

Neural Network

Benefits for operators

- Reduced Time To Repair (TTR)
 - Almost instantaneous troubleshooting
 - TTR from hours/days to minutes/hours?
- Reduced Service Downtime
 - Early detection eliminates a class of failure
- First demonstrations

Vela et al., "BER degradation Detection and Failure Identification in Elastic Optical Networks", in Journal of Lightwave Technology, vol. 35, no. 21, pp. 4595-4604, Nov. 2017

S. Shahkarami, F. Musumeci, F. Cugini, M. Tornatore, "Machine-Learning-Based Soft-Failure Detection and Identification in Optical Networks," in Proceedings, OFC 2018, San Diego (CA), Usa, Mar. 11-15, 2018

Many open questions/challenges!

- **[QoT]** Optical network is a living network
 - Continuos training.. How?
- **[QoT]** How to build the right training set?
 - Rare occurences of false positives -> Low accuracy...
 - Selective probes?
- [Failure] What if completely new/unclassified failure arise?
 «Novelty detection» ?

Overview of other applications

Physical layer

- 1. Optical amplifier control
- 2. Modulation format recognition
- 3. Nonlinearities mitigation

Network layer

- 1. Traffic prediction and virtual topology design
- 2. Flow classification

Classification taken from: F. Musumeci et al., "A Survey on Application of Machine Learning Techniques in Optical Networks", Accepted to IEEE Communication Surveys and Tutorial, available online (Arxiv)

Thanks for your attention!

massimo.tornatore@polimi.it

European Eu Commission for

Horizon 2020 European Union funding for Research & Innovation

POLITECNICO MILANO 1863